zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of telegraph equation using interpolating scaling functions. (English) Zbl 1205.65288
Summary: A numerical technique is presented for the solution of second order one dimensional linear hyperbolic equation. This method uses interpolating scaling functions. The method consists of expanding the required approximate solution as the elements of interpolating scaling functions. Using the operational matrix of derivatives, we reduce the problem to a set of algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces accurate results.

65M99Numerical methods for IVP of PDE
Full Text: DOI
[1] El-Azab, M. S.; El-Gamel, M.: A numerical algorithm for the solution of telegraph equations, Appl. math. Comput. 190, 757-764 (2007) · Zbl 1132.65087 · doi:10.1016/j.amc.2007.01.091
[2] Metaxas, A. C.; Meredith, R. J.: Industrial microwave, heating, (1993)
[3] Roussy, G.; Pearcy, J. A.: Foundations and industrial applications of microwaves and radio frequency fields, (1995)
[4] Dehghan, M.: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer. methods partial differential equations 21, 24-40 (2005) · Zbl 1059.65072 · doi:10.1002/num.20019
[5] Mohanty, R. K.; Jain, M. K.; George, K.: On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients, J. comput. Appl. math. 72, 421-431 (1996) · Zbl 0877.65066 · doi:10.1016/0377-0427(96)00011-8
[6] Twizell, E. H.: An explicit difference method for the wave equation with extended stability range, Bit 19, 378-383 (1979) · Zbl 0441.65066 · doi:10.1007/BF01930991
[7] Gao, F.; Chi, C.: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation, Appl. math. Comput. 187, 1272-1276 (2007) · Zbl 1114.65347 · doi:10.1016/j.amc.2006.09.057
[8] Saadatmandi, A.; Dehghan, M.: Numerical solution of the one-dimensional wave equation with an integral condition, Numer. methods partial differential equations 23, 282-292 (2007) · Zbl 1112.65097 · doi:10.1002/num.20177
[9] Borhanifar, A.; Abazari, Reza: An unconditionally stable parallel difference scheme for telegraph equation scheme for telegraph equation, Math. probl. Eng. (2009) · Zbl 1181.78018 · doi:10.1155/2009/969610
[10] Saadatmandi, A.; Dehghan, M.: Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. methods partial differential equations 26, No. 1, 239-252 (2010) · Zbl 1186.65136 · doi:10.1002/num.20442
[11] Abdou, M. A.: Adomian decomposition method for solving the telegraph equation in charged particle transport, J. quant. Spectrosc. radiat. Transfer 95, 407-414 (2005)
[12] Mohanty, R. K.: An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation, Appl. math. Lett. 17, 101-105 (2004) · Zbl 1046.65076 · doi:10.1016/S0893-9659(04)90019-5
[13] Mohanty, R. K.: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients, Appl. math. Comput. 165, 229-236 (2005) · Zbl 1070.65076 · doi:10.1016/j.amc.2004.07.002
[14] Lapidus, L.; Pinder, G. F.: Numerical solution of partial differential equations in science and engineering, (1982) · Zbl 0584.65056
[15] Mohebbi, A.; Dehghan, M.: High order compact solution of the one-space-dimensional linear hyperbolic equation, Numer. methods partial differential equations 24, 1222-1235 (2008) · Zbl 1151.65071 · doi:10.1002/num.20313
[16] Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. comput. Simulation 71, 16-30 (2006) · Zbl 1089.65085 · doi:10.1016/j.matcom.2005.10.001
[17] Dehghan, M.: Implicit collocation technique for heat equation with non-classic initial condition, Int. J. Nonlinear sci. Numer. simul. 7, 447-450 (2006)
[18] Dehghan, M.; Shokri, A.: A numerical method for solving the hyperbolic telegraph equation, Numer. methods partial differential equations 24, 1080-1093 (2008) · Zbl 1145.65078 · doi:10.1002/num.20306
[19] Dehghan, M.; Lakestani, M.: The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation, Numer. methods partial differential equations 25, 931-938 (2009) · Zbl 1169.65102 · doi:10.1002/num.20382
[20] Shamsi, M.; Razzaghi, M.: Numerical solution of the controlled Duffing oscillator by the interpolating scaling functions, J. electromagn. Waves appl. 18, No. 5, 691-705 (2004)
[21] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A.: Spectral methods in fluid dynamic, (1987) · Zbl 0717.76004
[22] Shamsi, M.; Razzaghi, M.: Solution of hallen’s integral equation using multiwavelets, Comput. phys. Comm. 168, 187-197 (2005) · Zbl 1196.65203 · doi:10.1016/j.cpc.2005.01.016
[23] Alpert, B.; Beylkin, G.; Gines, D.; Vozovoi, L.: Adaptive solution of partial differential equations in multiwavelet bases, J. comput. Phys. 182, 149-190 (2002) · Zbl 1015.65046 · doi:10.1006/jcph.2002.7160