zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Legendre wavelets method for the nonlinear Volterra---Fredholm integral equations. (English) Zbl 1205.65342
Summary: A numerical method for solving the nonlinear Volterra---Fredholm integral equations is presented. The method is based upon Legendre wavelet approximations. The properties of Legendre wavelet are first presented. These properties together with the Gaussian integration method are then utilized to reduce the Volterra---Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.

65R20Integral equations (numerical methods)
65T60Wavelets (numerical methods)
45G10Nonsingular nonlinear integral equations
Full Text: DOI
[1] Chui, C. K.: Wavelets: A mathematical tool for signal analysis. (1997) · Zbl 0903.94007
[2] Beylkin, G.; Coifman, R.; Rokhlin, V.: Fast wavelet transforms and numerical algorithms. I. commun. Pure appl. Math. 44, 141-183 (1991) · Zbl 0722.65022
[3] Tricomi, F. G.: Integral equations. (1982)
[4] Lardy, L. J.: A variation of Nyström’s method for Hammerstein equations. J. integral equat. 3, 43-60 (1981) · Zbl 0471.65096
[5] Kumar, S.; Sloan, I. H.: A new collocation-type method for Hammerstein integral equations. J. math. Comput. 48, 123-129 (1987) · Zbl 0616.65142
[6] Brunner, H.: Implicitly linear collocation method for nonlinear Volterra equations. J. appl. Num. math. 9, 235-247 (1992) · Zbl 0761.65103
[7] Guoqiang, H.: Asymptotic error expansion variation of a collocation method for Volterra -- Hammerstein equations. J. appl. Num. math. 13, 357-369 (1993) · Zbl 0799.65150
[8] Yalcinbas, S.: Taylor polynomial solution of nonlinear Volterra -- Fredholm integral equations. Appl. math. Comput. 127, 195-206 (2002)
[9] Constantinides, A.: Applied numerical methods with personal computers. (1987) · Zbl 0653.65001
[10] Gu, J. S.; Jiang, W. S.: The Haar wavelets operational matrix of integration. Int. J. Syst. sci. 27, 623-628 (1996) · Zbl 0875.93116
[11] Razzaghi, M.; Yousefi, S.: Legendre wavelets direct method for variational problems. Math. comp. Simulat. 53, 185-192 (2000)
[12] Razzaghi, M.; Yousefi, S.: Legendre wavelets method for constrained optimal control problems. Math. meth. Appl. sci. 25, 529-539 (2002) · Zbl 1001.49033
[13] Wazwaz, A. M.: A first course in integral equations. (1997) · Zbl 0924.45001
[14] Kalman, R. E.; Kalaba, R. E.: Quasilinearization and nonlinear boundary-value problems. (1996)