×

zbMATH — the first resource for mathematics

Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. (English) Zbl 1205.76080
Summary: In a variety of applications, most notably microfluidics design, slip-based boundary conditions have been sought to characterize fluid flow over patterned surfaces. We focus on laminar shear flows over surfaces with periodic height fluctuations and/or fluctuating Navier scalar slip properties. We derive a general formula for the ‘effective slip’, which describes equivalent fluid motion at the mean surface as depicted by the linear velocity profile that arises far from it. We show that the slip and the applied stress are related linearly through a tensorial mobility matrix, and the method of domain perturbation is then used to derive an approximate formula for the mobility law directly in terms of surface properties. The specific accuracy of the approximation is detailed, and the mobility relation is then utilized to address several questions, such as the determination of optimal surface shapes and the effect of random surface fluctuations on fluid slip.

MSC:
76D07 Stokes and related (Oseen, etc.) flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zhou, Intl J. Numer. Methods Fluids 39 pp 1139– (1995)
[2] DOI: 10.1017/S0022112007005149 · Zbl 1112.76019 · doi:10.1017/S0022112007005149
[3] Wang, Phys. Fluids 16 pp 2136– (2004)
[4] Sarkar, J. Fluid Mech. 316 pp 223– (1996)
[5] Priezjev, J. Fluid Mech. 554 pp 25– (2006)
[6] Panzer, Intl J. Mod. Phys. B 6 pp 3251– (1992)
[7] Miksis, J. Fluid Mech. 273 pp 125– (1994)
[8] Luchini, J. Fluid Mech. 228 pp 87– (1991)
[9] Hinch, Perturbation Methods (1991) · doi:10.1017/CBO9781139172189
[10] Lauga, J. Fluid Mech. 489 pp 55– (2003)
[11] Higdon, J. Fluid Mech. 159 pp 195– (1985)
[12] Lauga, Handbook of Experimental Fluid Dynamics pp 1219– (2007)
[13] Feuillebois, Phys. Rev. Lett. 102 pp 026001– (2009)
[14] Kunert, Intl J. Comput. Fluid D 27 pp 475– (2008)
[15] Davis, Phys. Fluids 21 pp 011701– (2009)
[16] Jung, Phys. Rev. E 72 pp 056319– (2005)
[17] Bocquet, Soft Matter 3 pp 685– (2007)
[18] Hocking, J. Fluid Mech 76 pp 801– (1976)
[19] Bechert, J. Fluid Mech. 206 pp 105– (1989)
[20] Bazant, J. Fluid Mech. 613 pp 125– (2008)
[21] Batchelor, J. Fluid Mech. 44 pp 419– (1970)
[22] Ajdari, Phys. Rev. E 65 pp 016301– (2002)
[23] Wang, Phys. Fluids 15 pp 1114– (2003)
[24] Wang, Phys. Fluids 6 pp 2248– (1994)
[25] Wang, Phys. Fluids 21 pp 697– (1978)
[26] Vinogradova, Intl J. Miner. Proc. 56 pp 31– (1999)
[27] Tuck, J. Fluid Mech. 300 pp 59– (1995)
[28] Torquato, Random Heterogeneous Materials (2002) · doi:10.1007/978-1-4757-6355-3
[29] Stroock, Anal. Chem. 74 pp 5306– (2002)
[30] Stroock, Science 295 pp 647– (2002)
[31] DOI: 10.1146/annurev.fluid.36.050802.122124 · Zbl 1076.76076 · doi:10.1146/annurev.fluid.36.050802.122124
[32] Wilkening, SIAM J. Math. Anal. 41 pp 588– (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.