zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Steady heat transfer through a radial fin with rectangular and hyperbolic profiles. (English) Zbl 1205.80035
Summary: We construct some exact solutions for the thermal diffusion in a fin with a rectangular profile and another with a hyperbolic profile. Both the thermal conductivity and the heat transfer coefficient are assumed to be temperature dependent. Moreover, the thermal conductivity and the heat transfer terms are given by the same power law in one case and distinct power laws in the other. A point transformation is introduced to linearize the problem when the power laws are equal. In the other case, classical Lie symmetry techniques are employed to analyze the problem. The exact solutions obtained satisfy the realistic boundary conditions. The effects of applicable physical parameters such as the thermo-geometric fin parameter and the fin efficiency are analyzed.

80A20Heat and mass transfer, heat flow
Full Text: DOI
[1] Kraus, A. D.; Aziz, A.; Welty, J.: Extended surface heat transfer, (2001)
[2] , Recent advances in analysis of heat transfer for fin type surfaces (2000)
[3] Khani, F.; Aziz, A.: Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient, Commun. nonlinear sci. Numer. simul. 15, 590-601 (2010)
[4] Aziz, A.; Khani, F.: Analytical solutions for a rotating radial fin of rectangular and various convex parabolic profiles, Commun. nonlinear sci. Numer. simul. 15, No. 6, 1565-1574 (2010)
[5] Taufiq, B. N.; Masjuki, H. H.; Mahlia, T. M. I.; Saidur, R.; Faizul, M. S.; Mohamad, E. N.: Second law analysis for optimal thermal design of radial fin geometry by convection, Appl. therm. Eng. 27, 1363-1370 (2007)
[6] Heggs, P. J.; Ooi, T. H.: Design charts for a radial rectangular fins in terms of performance ratio and maximum effectiveness, Appl. therm. Eng. 24, 1341-1351 (2004)
[7] Khani, F.; Raji, M. Ahmadzadeh; Hamedi-Nejad, H.: Analytic solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Commun. nonlinear sci. Numer. simul. 14, 3327-3338 (2009) · Zbl 1221.74083 · doi:10.1016/j.cnsns.2009.01.012
[8] Khani, F.; Raji, M. Ahmadzadeh; Hamedi-Nezhad, H.: A series solution of the fin problem with a temperature-dependent conductivity, Commun. nonlinear sci. Numer. simul. 14, No. 7, 3007-3017 (2009)
[9] Moitsheki, R. J.; Hayat, T.; Malik, M. Y.: Some exact solutions for a fin problem with a power law temperature-dependent thermal conductivity, Nonlinear anal. RWA 11, No. 5, 3287-3294 (2010) · Zbl 1261.35140
[10] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions, (1972) · Zbl 0543.33001 · http://www.cs.bham.ac.uk/~aps/research/projects/as/
[11] Polyanin, A. D.; Zaitsev, V. F.: Handbook of exact solutions for ordinary differential equations, (1995) · Zbl 0855.34001
[12] Mahomed, F. M.: Symmetry group classification of ordinary differential equations: survey of some results, Math. methods appl. Sci. 30, 1995-2012 (2007) · Zbl 1135.34029 · doi:10.1002/mma.934
[13] Olver, P. J.: Applications of Lie groups to differential equations, (1986) · Zbl 0588.22001
[14] Bluman, G. W.; Kumei, S.: Symmetries and differential equations, (1989) · Zbl 0698.35001
[15] Stephani, H.: Differential equations: their solution using symmetries, (1989) · Zbl 0704.34001
[16] Ibragimov, N. H.: Elementary Lie group analysis and ordinary differential equations, (1999) · Zbl 1047.34001
[17] Bluman, G. W.; Anco, S. C.: Symmetry and integration methods for differential equations, (2002) · Zbl 1013.34004
[18] Joneidi, A. A.; Ganji, D. D.; Babaelahi, M.: Differential transformation method to determine fin efficiency of convective straight fin with temperature dependent thermal conductivity, Int. commun. Heat mass transfer 36, 757-762 (2009)
[19] Kundu, B.; Das, P. K.: Performance and optimum designs analysis of convective fin arrays attached to flat and curved primary surfaces, Int. J. Refrig. 32, 430-443 (2009)