×

zbMATH — the first resource for mathematics

Surface energies in nonconvex discrete systems. (English) Zbl 1205.82036

MSC:
82B05 Classical equilibrium statistical mechanics (general)
49J45 Methods involving semicontinuity and convergence; relaxation
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
74G65 Energy minimization in equilibrium problems in solid mechanics
74Q99 Homogenization, determination of effective properties in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.3934/nhm.2006.1.85 · Zbl 1131.49029 · doi:10.3934/nhm.2006.1.85
[2] DOI: 10.1137/S0036141003426471 · Zbl 1070.49009 · doi:10.1137/S0036141003426471
[3] Ambrosio L., Functions of Bounded Variation and Free Discontinuity Problems (2000) · Zbl 0957.49001
[4] DOI: 10.1007/BF01195977 · Zbl 0780.49011 · doi:10.1007/BF01195977
[5] DOI: 10.1007/s00205-002-0218-5 · Zbl 1028.74005 · doi:10.1007/s00205-002-0218-5
[6] Braides A., Lecture Notes in Mathematics, in: Approximation of Free-Discontinuity Problems (1998) · Zbl 0909.49001 · doi:10.1007/BFb0097344
[7] DOI: 10.1093/acprof:oso/9780198507840.001.0001 · doi:10.1093/acprof:oso/9780198507840.001.0001
[8] Braides A., Comm. Contemp. Math. 2 pp 285–
[9] DOI: 10.1007/s002050050135 · Zbl 0945.74006 · doi:10.1007/s002050050135
[10] DOI: 10.1007/978-3-540-36546-4_1 · doi:10.1007/978-3-540-36546-4_1
[11] Braides A., Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials
[12] Braides A., Math. Mech. Solids 6 pp 395–
[13] Braides A., J. Convex Anal. 9 pp 363–
[14] Braides A., Proc. Steklov Inst. 236 pp 395–
[15] DOI: 10.1007/s00205-005-0399-9 · Zbl 1093.74013 · doi:10.1007/s00205-005-0399-9
[16] DOI: 10.1051/m2an:1999115 · Zbl 0947.65076 · doi:10.1051/m2an:1999115
[17] DOI: 10.1016/S0022-5096(01)00054-0 · Zbl 1035.74005 · doi:10.1016/S0022-5096(01)00054-0
[18] DOI: 10.1007/978-1-4612-0327-8 · doi:10.1007/978-1-4612-0327-8
[19] Del Piero G., J. Phys. IV France 8 pp 95–
[20] DOI: 10.1007/s00332-002-0495-z · Zbl 1084.74501 · doi:10.1007/s00332-002-0495-z
[21] DOI: 10.1088/0953-8984/4/49/006 · doi:10.1088/0953-8984/4/49/006
[22] Modica L., Boll. Un. Mat. It. B 14 pp 285–
[23] Pagano S., Quart. Appl. Math. 61 pp 89– · Zbl 1068.74050 · doi:10.1090/qam/1955225
[24] DOI: 10.1007/s000330300007 · Zbl 1088.74008 · doi:10.1007/s000330300007
[25] DOI: 10.1007/s00220-005-1458-7 · Zbl 1113.82016 · doi:10.1007/s00220-005-1458-7
[26] L. Truskinovsky, Contemporary Research in the Mechanics and Mathematics of Materials, eds. R. C. Batra and M. F. Beattys (CIMNE, Barcelona, 1996) pp. 322–332.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.