zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimization of a nonlinear area traffic control system with elastic demand. (English) Zbl 1205.90074
Summary: An area traffic control network system is considered. Optimal signal settings can be determined while trip rates and network flow are in equilibrium. This problem can be formulated as a nonlinear mathematical program with equilibrium constraints. For the objective function, the system performance can be defined as a function of signal setting variables. For the constraint set, a user equilibrium traffic assignment with elastic demand obeying Wardrop’s first principle is formulated as a variational inequality problem. Due to the nonlinearity and non-differentiability of the perturbed solutions in equilibrium constraints, a non-smooth approach is investigated in this paper. Numerical tests are performed using a variety of example road networks to quantify the effectiveness and robustness of the proposed method.
90B20Traffic problems
90C30Nonlinear programming
Full Text: DOI
[1] Abdulaal, M.; Leblanc, L. J.: Continuous equilibrium network design models, Transportation research 13B, 19-32 (1979) · Zbl 0398.90042
[2] Allsop, R. E.; Charlesworth, J. A.: Traffic in a signal-controlled road network: an example of different signal timings inducing different routings, Traffic engineering control 18, 262-264 (1977)
[3] Cascetta, E.; Gallo, M.; Montella, B.: Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models, Annals of operations research 144, 301-328 (2006) · Zbl 1159.90308 · doi:10.1007/s10479-006-0008-9
[4] Ceylan, H.; Bell, M. G. H.: Traffic signal timing optimization based on genetic algorithm approach, including drivers routing, Transportation research part B 38, 329-342 (2004)
[5] Chiou, S. -W.: A bi-level programming for logistics network design with system-optimized flows, Information sciences 14, 2434-2441 (2009) · Zbl 1166.90310 · doi:10.1016/j.ins.2009.03.005
[6] Chiou, S. -W.: Bilevel programming for the continuous transport network design problem, Transportation research part B 39, 361-383 (2005)
[7] Chiou, S. -W.: TRANSYT derivatives for area traffic control optimization with network equilibrium flows, Transportation research part B 37, 263-290 (2003)
[8] Cipriani, E.; Fusco, G.: Combined signal setting design and traffic assignment problem, European journal of operational research 155, 569-583 (2004) · Zbl 1049.90014 · doi:10.1016/j.ejor.2003.08.006
[9] Clarke, F. F.: Optimization and nonsmooth analysis, (1983) · Zbl 0582.49001
[10] Clegg, J.; Smith, M. J.; Xiang, Y.; Yarrow, R.: Bilevel programming applied to optimizing urban transportation, Transportation research part B 35, 41-70 (2001)
[11] Dafermos, D.: The general multimodal network equilibrium problem with elastic demand, Networks 12, 57-72 (1982) · Zbl 0478.90022 · doi:10.1002/net.3230120105
[12] Dickson, T. J.: A note on traffic assignment and signal timings in a signal-controlled road network, Transportation research part B 15, 267-271 (1981)
[13] Gau, H.; Chen, T.; Lam, J.: A new delay system approach to network-based control, Automatica 44, 39-52 (2008) · Zbl 1138.93375 · doi:10.1016/j.automatica.2007.04.020
[14] Gershwin, G. B., & Tan, H. N. (1979). Hybrid optimization: optimal static traffic control constrained by drivers’ route choice behavior. Massachusetts Institute of Technology, Laboratory for Information and Decision System Report LIDS-p-870. · Zbl 0427.90083
[15] He, Y.; Wang, Q. -G.; Lin, C.; Wu, M.: Delay-range-dependent stability for systems with time-varying delay, Automatica 43, No. 2, 371-376 (2007) · Zbl 1111.93073 · doi:10.1016/j.automatica.2006.08.015
[16] Heydecker, B. G., & Khoo, T. K. (1990). The equilibrium network design problem. In Proceedings of AIRO’90 conference on models and methods for decision support, Sorrento (pp. 587--602).
[17] Levenberg, K.: A method for the solution of certain nonlinear problems in least squares, Quarterly applied mathematics 2, 164-168 (1944) · Zbl 0063.03501
[18] Marquardt, D. W.: An algorithm for least squares estimation of nonlinear parameters, SIAM journal on applied mathematics 11, 431-441 (1963) · Zbl 0112.10505 · doi:10.1137/0111030
[19] Meng, Q.; Yang, H.; Bell, M. G. H.: An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem, Transportation research part B 35, 83-105 (2001)
[20] Mifflin, R.: Semismooth and semiconvex functions in constrained optimisation, SIAM on control and optimization 15, 959-972 (1977) · Zbl 0376.90081 · doi:10.1137/0315061
[21] Nagurney, A.: Computational comparisons of algorithms for general asymmetric traffic equilibrium problems with fixed and elastic demands, Transportation research part B 20, 78-84 (1986)
[22] Outrata, J.; Kocvara, M.; Zowe, J.: Nonsmooth approach to optimization problems with equilibrium constraints: theory, applications and numerical results, (1998) · Zbl 0947.90093
[23] Pang, J. -S.; Qi, L.: Nonsmooth equations: motivation and algorithms, SIAM journal on optimization 3, 443-465 (1993) · Zbl 0784.90082 · doi:10.1137/0803021
[24] Patriksson, M.: Sensitivity analysis of traffic equilibria, Transportation science 38, 258-281 (2004)
[25] Polushin, I. G.; Liu, P. X.; Lung, C. -H.: On the model-based approach to nonlinear networked control systems, Automatica 44, 2409-2414 (2008) · Zbl 1153.93449 · doi:10.1016/j.automatica.2008.01.031
[26] Qi, L.; Sun, J.: A nonsmooth version of Newton’s method, Mathematical programming 58, 353-368 (1993) · Zbl 0780.90090 · doi:10.1007/BF01581275
[27] Qiu, Y.; Magnanti, T. L.: Sensitivity analysis for variational inequalities defined on polyhedral sets, Mathematics of operations research 14, 410-432 (1989) · Zbl 0698.90069 · doi:10.1287/moor.14.3.410
[28] Suh, S.; Kim, T. J.: Solving nonlinear bilevel programming models of the equilibrium network design problem: a comparative review, Annals of operations research 34, 203-218 (1992) · Zbl 0751.90081 · doi:10.1007/BF02098180
[29] Sun, W.: Nonmonotone trust region method for solving optimization problems, Applied mathematics and computation 156, 159-174 (2004) · Zbl 1059.65055 · doi:10.1016/j.amc.2003.07.008
[30] Suwansirikul, C.; Friesz, T. L.; Tobin, R. L.: Equilibrium decomposed optimization: a heuristic for continuous equilibrium network design problem, Transportation science 21, 254-263 (1987) · Zbl 0638.90097 · doi:10.1287/trsc.21.4.254
[31] Vardi, A.: A trust region algorithm for equality constrained minimization: convergence properties and implementation, SIAM journal on numerical analysis 22, 575-591 (1985) · Zbl 0581.65045 · doi:10.1137/0722035
[32] Yang, H.; Yagar, S.: Traffic assignment and signal control in saturated road networks, Transportation research part A 29, 125-139 (1995)
[33] Yuan, Y.: On a subproblem of trust region algorithms for constrained optimization, Mathematical programming 47, 53-63 (1990) · Zbl 0711.90062 · doi:10.1007/BF01580852
[34] Yuan, Y.; Sun, W.: Optimization theory and methods, (1997)
[35] Yue, D.; Han, Q. -L.; Lam, J.: Network-based robust H$\infty $control of systems with uncertainty, Automatica 41, No. 6, 999-1007 (2005) · Zbl 1091.93007 · doi:10.1016/j.automatica.2004.12.011
[36] Zhang, J.; Xu, C.: Trust region dogleg path algorithm for unconstrained minimization, Annal of operations research 87, 407-418 (1999) · Zbl 0924.90124 · doi:10.1023/A:1018957708498
[37] Zhang, J.; Zhu, D.: Projected quasi-Newton algorithm with trust-region for constrained optimization, Journal of optimization theory and applications 67, 369-393 (1990) · Zbl 0696.90050 · doi:10.1007/BF00940481
[38] Zhivoglyadov, P. V.; Middleton, R. H.: Networked control design for linear systems, Automatica 39, No. 3, 743-750 (2003) · Zbl 1022.93018 · doi:10.1016/S0005-1098(02)00306-0