zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Soft set theory and uni-int decision making. (English) Zbl 1205.91049
Summary: We firstly redefine the operations of Molodtsov’s soft sets to make them more functional for improving several new results. We also define products of soft sets and uni-int decision function. By using these new definitions we then construct an uni-int decision making method which selects a set of optimum elements from the alternatives. We finally present an example which shows that the method can be successfully applied to many problems that contain uncertainties.

MSC:
91B06Decision theory
90B50Management decision making, including multiple objectives
03E72Fuzzy set theory
WorldCat.org
Full Text: DOI
References:
[1] Ali, M. I.; Feng, F.; Liu, X.; Min, W. K.; Shabir, M.: On some new operations in soft set theory, Computers and mathematics with applications 57, 1547-1553 (2009) · Zbl 1186.03068 · doi:10.1016/j.camwa.2008.11.009
[2] Aktaş, H.; &ccedil, N.; Ağ Man: Soft sets and soft groups, Information sciences 177, 2726-2735 (2007) · Zbl 1119.03050
[3] Atanassov, K.: Intuitionistic fuzzy sets, Fuzzy sets and systems 20, 87-96 (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[4] &ccedil, N.; Ağ Man; Engino&gbreve, S.; Lu: Soft matrix theory and its decision making, Computers and mathematics with applications 59, 3308-3314 (2010) · Zbl 1198.15021
[5] Chen, D.; Tsang, E. C. C.; Yeung, D. S.; Wang, X.: The parameterization reduction of soft sets and its applications, Computers and mathematics with applications 49, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[6] Feng, F.; Jun, Y. B.; Zhao, X.: Soft semirings, Computers and mathematics with applications 56/10, 2621-2628 (2008) · Zbl 1165.16307 · doi:10.1016/j.camwa.2008.05.011
[7] Gau, W. L.; Buehrer, D. J.: Vague sets, IEEE transactions on systems, man and cybernetics 23/2, 610-614 (1993) · Zbl 0782.04008
[8] Gorzalzany, M. B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy sets and systems 21, 1-17 (1987) · Zbl 0635.68103 · doi:10.1016/0165-0114(87)90148-5
[9] Jun, Y. B.: Soft BCK/BCI-algebras, Computers and mathematics with applications 56, 1408-1413 (2008) · Zbl 1155.06301
[10] Jun, Y. B.; Park, C. H.: Applications of soft sets in ideal theory of BCK/BCI-algebras, Information sciences 178, 2466-2475 (2008) · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[11] Kong, Z.; Gao, L.; Wang, L.; Li, S.: The normal parameter reduction of soft sets and its algorithm, Computers and mathematics with applications 56, 3029-3037 (2008) · Zbl 1165.90699 · doi:10.1016/j.camwa.2008.07.013
[12] Kovkov, D. V.; Kolbanov, V. M.; Molodtsov, D. A.: Soft sets theory-based optimization, Journal of computer and systems sciences international 46, No. 6, 872-880 (2007) · Zbl 1294.49009
[13] Maji, P. K.; Bismas, R.; Roy, A. R.: Soft set theory, Computers and mathematics with applications 45, 555-562 (2003) · Zbl 1032.03525
[14] Maji, P. K.; Roy, A. R.; Biswas, R.: An application of soft sets in a decision making problem, Computers and mathematics with applications 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[15] Majumdar, P.; Samanta, S. K.: Similarity measure of soft sets, New mathematics and natural computation 4, No. 1, 1-12 (2008) · Zbl 1136.68533 · doi:10.1142/S1793005708000908
[16] Molodtsov, D.: The theory of soft sets, (2004)
[17] Molodtsov, D. A.; Leonov, V. Yu.; Kovkov, D. V.: Soft sets technique and its application, Nechetkie sistemy i myagkie vychisleniya 1, No. 1, 8-39 (2006) · Zbl 1308.03054
[18] Molodtsov, D.: Soft set theory -- first results, Computers and mathematics with applications 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[19] Mushrif, M. M.; Sengupta, S.; Ray, A. K.: Texture classification using a novel, soft-set theory based classification algorithm, Lecture notes in computer science 3851, 246-254 (2006)
[20] Pawlak, Z.: Rough sets, International journal of information and computer sciences 11, 341-356 (1982) · Zbl 0501.68053
[21] Park, C. H.; Jun, Y. B.; Öztürk, M. A.: Soft WS-algebras, Communications of korean mathematical society 23/3, 313-324 (2008) · Zbl 1168.06305 · doi:10.4134/CKMS.2008.23.3.313
[22] Pei, D.; Miao, D.: From soft sets to information systems, Proceedings of granular computing 2, 617-621 (2005)
[23] Roy, A. R.; Maji, P. K.: A fuzzy soft set theoretic approach to decision making problems, Journal of computational and applied mathematics 203, 412-418 (2007) · Zbl 1128.90536 · doi:10.1016/j.cam.2006.04.008
[24] Sun, Q. -M.; Zhang, Z-L.; Liu, J.: Soft sets and soft modules, Proceedings of rough sets and knowledge technology, RSKT-2008, 403-409 (2008) · Zbl 1234.16036
[25] Xiao, Z.; Gong, K.; Zou, Y.: A combined forecasting approach based on fuzzy soft sets, Journal of computational and applied mathematics 228, No. 1, 326-333 (2009) · Zbl 1161.91472 · doi:10.1016/j.cam.2008.09.033
[26] Xiao, Z.; Li, Y.; Zhong, B.; Yang, X.: Research on synthetically evaluating method for business competitive capacity based on soft set, Statistical research, 52-54 (2003)
[27] Xiao, Z.; Chen, L.; Zhong, B.; Ye, S.: Recognition for soft information based on the theory of soft sets, Proceedings of ICSSSM-05 2, 1104-1106 (2005)
[28] Yang, X.; Yu, D.; Yang, J.; Wu, C.: Generalization of soft set theory: from crisp to fuzzy case, Advances in soft computing 40, 345-355 (2007) · Zbl 1127.03331
[29] Zadeh, L. A.: Fuzzy sets, Information and control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[30] Zou, Y.; Xiao, Z.: Data analysis approaches of soft sets under incomplete information, Knowledge-based systems 21, 941-945 (2008)