zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation. (English) Zbl 1205.93066
Summary: This paper presents a Fault Detection and Isolation (FDI) scheme for a class of Lipschitz nonlinear systems with nonlinear and unstructured modeling uncertainty. This significantly extends previous results by considering a more general class of system nonlinearities which are modeled as functions of the system input and partially measurable state variables. A new FDI method is developed using adaptive estimation techniques. The FDI architecture consists of a fault detection estimator and a bank of fault isolation estimators. The fault detectability and isolability conditions, characterizing the class of faults that are detectable and isolable by the proposed scheme, are rigorously established. The fault isolability condition is derived via the so-called fault mismatch functions, which are defined to characterize the mutual difference between pairs of possible faults. A simulation example of a single-link flexible joint robot is used to illustrate the effectiveness of the proposed scheme.

MSC:
93C10Nonlinear control systems
93C40Adaptive control systems
93C15Control systems governed by ODE
WorldCat.org
Full Text: DOI
References:
[1] Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M.: Diagnosis and fault-tolerant control, (2006) · Zbl 1126.93004
[2] Chen, J.; Patton, R. J.: Robust model-based fault diagnosis for dynamic systems, (1999) · Zbl 0920.93001
[3] Chen, W.; Saif, M.: A sliding mode observer-based strategy for fault detection, isolation, and estimation in a class of Lipschitz nonlinear systems, International journal of system science 38, No. 12, 943-955 (2007) · Zbl 1283.93062
[4] Demetriou, M. A.; Polycarpou, M. M.: Incipient fault diagnosis of dynamical systems using on-line approximators, IEEE transactions on automatic control 43, No. 11, 1612-1617 (1998) · Zbl 0957.90037 · doi:10.1109/9.728881
[5] Edwards, C.; Spurgeon, S. K.; Patton, R. J.: Sliding mode observers for fault detection and isolation, Automatica 36, 541-553 (2000) · Zbl 0968.93502 · doi:10.1016/S0005-1098(99)00177-6
[6] Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.: Effect of model uncertainty on failure detection: the threshold selector, IEEE transactions on automatic control 33, 1106-1115 (1988) · Zbl 0659.93062 · doi:10.1109/9.14432
[7] Farrell, J.; Polycarpou, M. M.: Adaptive approximation based control, (2006)
[8] Ferrari, R.; Parisini, T.; Polycarpou, M. M.: Distributed fault diagnosis with overlapping decompositions: an adaptive approximation approach, IEEE transactions on automatic control 54, 794-799 (2009)
[9] Floquet, T.; Barbot, J. P.; Perruquetti, W.: On the robust fault detection via a sliding mode disturbance observer, International journal of control 77, No. 7, 622-629 (2004) · Zbl 1062.93006 · doi:10.1080/00207170410001699030
[10] Frank, P. M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -- A survey and some new results, Automatica 26, 459-474 (1990) · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[11] Garci√°, E. A.; Frank, P. M.: Deterministic nonlinear observer-based approaches to fault diagnosis: A survey, IFAC control engineering practice 5, 663-670 (1997)
[12] Gertler, J. J.: Fault detection and diagnosis in engineering systems, (1998)
[13] Hammouri, H.; Kinnaert, M.; El Yaagoubi, E. H.: Observer-based approach to fault detection and isolation for nonlinear systems, IEEE transactions on automatic control 44, No. 10, 1879-1884 (1999) · Zbl 0956.93005 · doi:10.1109/9.793728
[14] Ioannou, P. A.; Sun, J.: Robust adaptive control, (1996) · Zbl 0839.93002
[15] Isermann, R.: Fault-diagnosis systems : an introduction from fault detection to fault tolerance, (2006)
[16] Jiang, B.; Staroswiechi, M.; Cocquempot, V.: Fault diagnosis based on adaptive observer for a class of nonlinear systems with unknown parameters, International journal of control 77, No. 4, 415-426 (2004) · Zbl 1098.93013 · doi:10.1080/00207170410001669673
[17] Kabore, P.; Wang, H.: Design of fault diagnosis filters and fault tolerant control for a class of nonlinear systems, IEEE transactions on automatic control 46, 1805-1810 (2001) · Zbl 1006.93068 · doi:10.1109/9.964696
[18] Krishnaswami, V., & Rizzoni, G. (1997). Robust residual generation for nonlinear system fault detection and isolation. In Proceedings of IFAC symp. on fault detection, supervision and safety for technical processes: SAFEPROCESS. Univ. of Hull, UK (pp. 163-168)
[19] Mhaskar, P.; Gani, A.; El-Farra, N. H.; Mcfall, C.; Christofides, P. D.; Davis, J. F.: Integrated fault-detection and fault-tolerant control of process systems, Aiche journal 52, No. 6, 2129-2148 (2006)
[20] Mhaskar, P.; Mcfall, C.; Gani, A.; Christofides, P. D.; Davis, J. F.: Isolation and handling of actuator faults in nonlinear systems, Automatica 44, 53-62 (2008) · Zbl 1138.93330 · doi:10.1016/j.automatica.2007.05.006
[21] De Persis, C.; Isidori, A.: A geometric approach to nonlinear fault detection and isolation, IEEE transactions on automatic control 46, 853-865 (2001) · Zbl 1009.93003 · doi:10.1109/9.928586
[22] Polycarpou, M. M.; Helmicki, M. A.: Automated fault detection and accommodation: a learning systems approach, IEEE transactions on systems, man and cybernetics 25, No. 11, 1447-1458 (1995)
[23] Raghavan, S.; Hedrick, J. K.: Observer design for a class of nonlinear systems, International journal of control 56, No. 2, 515-528 (1994) · Zbl 0802.93007 · doi:10.1080/00207179408923090
[24] Spong, M. W.; Vidyasagar, M.: Robot dynamics and control, (1989)
[25] Tang, X.; Tao, G.; Joshi, S. M.: Adaptive actuator failure compensation for nonlinear mimo systems with an aircraft control application, Automatica 43, 1869-1883 (2007) · Zbl 1132.93331 · doi:10.1016/j.automatica.2007.03.019
[26] Tao, G.; Joshi, S. M.; Ma, X.: Adaptive state feedback and tracking control of systems with actuator failures, IEEE transactions on automatic control 46, No. 1, 78-95 (2001) · Zbl 0992.93043 · doi:10.1109/9.898697
[27] Vemuri, A. T.; Polycarpou, M. M.: Robust nonlinear fault diagnosis in input-output systems, International journal of control 68, No. 2, 343-360 (1997) · Zbl 0887.93022 · doi:10.1080/002071797223659
[28] Vijayaraghavan, K.; Rajamani, R.; Bokor, J.: Quantitative fault estimation for a class of nonlinear systems, International journal of control 80, No. 1, 64-74 (2007) · Zbl 1115.93040 · doi:10.1080/00207170600921029
[29] Wang, H.; Huang, Z. J.; Daley, S.: On the use of adaptive updating rules for actuator and sensor fault diagnosis, Automatica 33, 217-225 (1997) · Zbl 0874.93058 · doi:10.1016/S0005-1098(96)00155-0
[30] Xu, A.; Zhang, Q.: Nonlinear system fault diagnosis based on adaptive estimation, Automatica 40, 1181-1193 (2004) · Zbl 1056.93034 · doi:10.1016/j.automatica.2004.02.018
[31] Yan, X.; Edwards, C.: Nonlinear robust fault reconstruction and estimation using a sliding mode observer, Automatica 43, 1605-1614 (2007) · Zbl 1128.93389 · doi:10.1016/j.automatica.2007.02.008
[32] Zhang, X.; Parisini, T.; Polycarpou, M. M.: Adaptive fault-tolerant control of nonlinear uncertain systems: A diagnostic information based approach, IEEE transactions on automatic control 49, No. 8, 1259-1274 (2004)
[33] Zhang, X.; Parisini, T.; Polycarpou, M. M.: Sensor bias fault isolation in a class of nonlinear systems, IEEE transactions on automatic control 50, 370-376 (2005)
[34] Zhang, X.; Polycarpou, M. M.; Parisini, T.: Robust fault isolation of a class of nonlinear input-output systems, International journal of control 74, No. 13, 1295-1310 (2001) · Zbl 1051.93041 · doi:10.1080/00207170110058099
[35] Zhang, X.; Polycarpou, M. M.; Parisini, T.: A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems, IEEE transactions on automatic control 47, No. 4, 576-593 (2002) · Zbl 1125.93358 · doi:10.1109/9.995036
[36] Zhang, X., Polycarpou, M. M., & Parisini, T. (2009). Decentralized fault detection in a class of large-scale nonlinear uncertain systems. In Proceedings of the 2009 IEEE conference on decision and control, Shanghai, China (pp. 6988-6993)
[37] Zhang, X., Polycarpou, M. M., & Parisini, T. (2009). Fault diagnosis of a class of uncertain nonlinear systems with lipschitz nonlinearities. In Proceedings of the 2009 IFAC symposium on fault detection, supervision and safety of technical processes, Barcelona, Spain (pp. 12-17) · Zbl 1205.93066