zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improved delay-range-dependent stability criteria for linear systems with time-varying delays. (English) Zbl 1205.93139
Summary: This paper is concerned with the stability analysis of linear systems with time-varying delays in a given range. A new type of augmented Lyapunov functional is proposed which contains some triple-integral terms. In the proposed Lyapunov functional, the information on the lower bound of the delay is fully exploited. Some new stability criteria are derived in terms of linear matrix inequalities without introducing any free-weighting matrices. Numerical examples are given to illustrate the effectiveness of the proposed method.

MSC:
93D30Scalar and vector Lyapunov functions
93C05Linear control systems
93C15Control systems governed by ODE
34H05ODE in connection with control problems
WorldCat.org
Full Text: DOI
References:
[1] Ariba, Y., & Gouaisbaut, F. (2007). Delay-dependent stability analysis of linear systems with time-varying delay. InProceedings of the 46th IEEE conference on decision and control (pp. 2053-2058) New Orleans, USA
[2] Fridman, E.; Shaked, U.: Delay-dependent stability and H$\infty $control: constant and time-varying delays, International journal of control 76, 48-60 (2003) · Zbl 1023.93032 · doi:10.1080/0020717021000049151
[3] Gao, H.; Wang, C.: Comments and further results on ”A descriptor system approach to H$\infty $control of linear time-delay systems”, IEEE transactions on automatic control 48, 520-525 (2003)
[4] Gu, K. (2000). Integral inequality in the stability problem of time-delay systems. In Proceedings of the 39th IEEE conference on decision and control (pp. 2805-2810) Sydney, Australia
[5] Gu, K.; Kharitonov, V. -L.; Chen, J.: Stability of time-delay systems, (2003) · Zbl 1039.34067
[6] Hale, J. -K.; Lunel, S. -M. Verduyn: Introduction to functional differential equations, Applied mathematical sciences (1993) · Zbl 0787.34002
[7] Han, Q. -L.: A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays, Automatica 40, 1791-1796 (2004) · Zbl 1075.93032 · doi:10.1016/j.automatica.2004.05.002
[8] Han, Q. -L.: On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty, Automatica 40, 1087-1092 (2004) · Zbl 1073.93043 · doi:10.1016/j.automatica.2004.01.007
[9] Haoussi, F. E.; Tissir, E. H.: Robust H$\infty $controller design for uncertain neutral systems via dynamic observer based output feedback, International journal of automation and computing 6, 164-170 (2009)
[10] He, Y.; Wang, Q. -G.; Lin, C.; Wu, M.: Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems, International journal of robust and nonlinear control 15, 923-933 (2005) · Zbl 1124.34049 · doi:10.1002/rnc.1039
[11] He, Y.; Wang, Q. -G.; Xie, L.; Lin, C.: Delay-range-dependent stability for systems with time-varying delay, Automatica 43, 371-376 (2007) · Zbl 1111.93073 · doi:10.1016/j.automatica.2006.08.015
[12] He, Y.; Wu, M.; She, J. -H.; Liu, G. P.: Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, Systems & control letters 51, 57-65 (2004) · Zbl 1157.93467
[13] Jiang, X.; Han, Q. -L.: On H$\infty $control for linear systems with interval time-varying delay, Automatica 41, 2099-2106 (2005) · Zbl 1100.93017 · doi:10.1016/j.automatica.2005.06.012
[14] Kharitonov, V. -L.; Niculescu, S. -I.: On the stability of linear systems with uncertain delay, IEEE transactions on automatic control 48, 127-132 (2003)
[15] Lin, C.; Wang, Q. -G.; Lee, H.: A less conservative robust stability test for linear uncertain time-delay systems, IEEE transactions on automatic control 51, 87-91 (2006)
[16] Niculescu, S. -I.: Delay effects on stability: A robust control approach, Lecture notes in control and information sciences (2001)
[17] Niculescu, S. -I.: On delay-dependent stability under model transformations of some neutral linear systems, International journal of control 74, 609-617 (2001) · Zbl 1047.34088 · doi:10.1080/00207170010017400
[18] Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE transactions on automatic control 44, 876-877 (1999) · Zbl 0957.34069 · doi:10.1109/9.754838
[19] Shao, H. -Y.: New delay-dependent stability criteria for systems with interval delay, Automatica 45, 744-749 (2009) · Zbl 1168.93387 · doi:10.1016/j.automatica.2008.09.010
[20] Sun, J.; Liu, G. -P.; Chen, J.: Delay-dependent stability and stabilization of neutral time-delay systems, International journal of robust and nonlinear control 19, 1364-1375 (2009) · Zbl 1169.93399 · doi:10.1002/rnc.1384
[21] Suplin, V.; Fridman, E.; Shaked, U.: H$\infty $control of linear uncertain time-delay systems -- a projection approach, IEEE transactions on automatic control 51, 680-685 (2006)
[22] Xu, S.; Lam, J.: Improved delay-dependent stability criteria for time-delay systems, IEEE transactions on automatic control 50, 384-387 (2005)
[23] Yue, D.; Han, Q. -L.; Lam, J.: Network-based robust H$\infty $control of systems with uncertainty, Automatica 41, 999-1007 (2005) · Zbl 1091.93007 · doi:10.1016/j.automatica.2004.12.011
[24] Zhang, Y.; Wu, A. -G.; Duan, G. -R.: Enhanced H$\infty $filtering for continuous-time state-delayed systems, International journal of automation and computing 6, 159-163 (2009)