Fernández, Julio A moduli approach to quadratic \(\mathbb{Q}\)-curves realizing projective mod \(p\) Galois representations. (English) Zbl 1206.11077 Rev. Mat. Iberoam. 24, No. 1, 1-30 (2008). An elliptic curve \(E\) is called \(\mathbb Q\)-curve if it is defined over \(\overline{\mathbb Q}\), it does not have complex multiplication and is isogenous to each of its conjugates \(^\sigma E\) for every \(\sigma\in G_{\mathbb Q}=\text{Gal}(\overline{\mathbb Q}/{\mathbb Q})\). A quadratic \(\mathbb Q\)-curve is defined over a quadratic number field. For a fixed odd prime \(p\) and a representation \(\rho\) of \(G_{\mathbb Q}\) into the projective group \(\text{PGL}_2({\mathbb F}_p)\) the author provides the twisted modular curves whose rational points supply the quadratic \(\mathbb Q\)-curves of degree \(N\) prime to \(p\) that realize \(\rho\) through the Galois action on their \(p\)-torsion modules. The modular curve to twist is either the fiber product of \(X_0(N)\) and \(X(p)\) or a certain quotient of Atkin-Lehner type, depending on the value of \(N\) modulo \(p\). Reviewer: Florin Nicolae (Berlin) MSC: 11G15 Complex multiplication and moduli of abelian varieties 14G35 Modular and Shimura varieties 11G05 Elliptic curves over global fields Keywords:mod \(p\) Galois representations; elliptic curves; \(p\)-torsion points; quadratic \(\mathbb{Q}\)-curves; twisted modular curves; moduli problem × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid EuDML References: [1] Bars, F.: Bielliptic modular curves. J. Number Theory 76 (1999), no. 1, 154-165. · Zbl 0964.11029 · doi:10.1006/jnth.1998.2343 [2] Bruin, N., Fernández, J., González, J. and Lario, J.-C.: Rational points on twists of \(X_0(63)\). Acta Arith. 126 (2007), no. 4, 361-385. · Zbl 1158.11027 [3] Ellenberg, J. S. and Skinner, C.: On the modularity of \(\mathbb Q\)-curves. Duke Math. J. 109 (2001), no. 1, 97-122. · Zbl 1009.11038 · doi:10.1215/S0012-7094-01-10914-9 [4] Fernández, J.: Elliptic realization of Galois representations . PhD Thesis. Universitat Politècnica de Catalunya, 2003. [5] Fernández, J.: On octahedral extensions of \(\mathbbQ\) and quadratic \(\mathbbQ\)-curves. J. Théor. Nombres Bordeaux 15 (2003), no. 1, 125-131. · Zbl 1049.11117 · doi:10.5802/jtnb.391 [6] Fernández, J., González, J. and Lario, J.-C.: Plane quartic twists of \(X(5,3)\). Canad. Math. Bull. 50 (2007), no. 2, 196-205. · Zbl 1130.11027 [7] Fernández, J. and Lario, J.-C.: On elliptic Galois representations and genus-zero modular units. J. Théor. Nombres Bordeaux 19 (2007), no. 1, 141-164. · Zbl 1193.11051 · doi:10.5802/jtnb.578 [8] Fernández, J., Lario, J.-C. and Rio, A.: Octahedral Galois representations arising from \(\mathbb Q\)-curves of degree \(2\). Canad. J. Math. 54 (2002), no. 6, 1202-1228. · Zbl 1044.11042 · doi:10.4153/CJM-2002-046-8 [9] Fernández, J., Lario, J.-C. and Rio, A.: On twists of the modular curves \(X(p)\). Bull. London Math. Soc. 37 (2005), no. 3, 342-350. · Zbl 1084.11025 · doi:10.1112/S0024609304004187 [10] González, J.: Equations of hyperelliptic modular curves. Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 779-795. · Zbl 0758.14010 · doi:10.5802/aif.1273 [11] Kluit, P. G.: On the normalizer of \(\Gamma _0(N)\). In Modular functions of one variable V (Proc. Second Internat. Conf., Bonn, 1976) , 239-246. Lecture Notes in Math. 601 . Springer, Berlin, 1977. · Zbl 0355.10020 [12] Lario, J.-C. and Rio, A.: An octahedral-elliptic type equality in \(\mathrmBr_2(k)\). C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 1, 39-44. · Zbl 0837.11061 [13] Ligozat, G.: Courbes modulaires de niveau \(11\). In Modular functions of one variable V (Proc. Second Internat. Conf., Bonn, 1976) , 149-237. Lecture Notes in Math. 601 . Springer, Berlin, 1977. · Zbl 0357.14006 [14] Mazur, B.: Rational points on modular curves. In Modular functions of one variable V (Proc. Second Internat. Conf., Bonn, 1976) , 107-148. Lecture Notes in Math. 601 . Springer, Berlin, 1977. · Zbl 0357.14005 [15] Ogg, A. P.: Hyperelliptic modular curves. Bull. Soc. Math. France 102 (1974), 449-462. · Zbl 0314.10018 [16] Ribet, K. A.: Abelian varieties over \(\mathbb Q\) and modular forms. In Algebra and topology 1992 (Taejŏn) , 53-79. Korea Adv. Inst. Sci. Tech., Taejŏn, 1992. [17] Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), no. 4, 259-331. · Zbl 0235.14012 · doi:10.1007/BF01405086 [18] Serre, J.-P.: Modular forms of weight one and Galois representations. In Algebraic number fields: \(L\)-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) , 193-268. Academic Press, London, 1977. · Zbl 0366.10022 [19] Serre, J.-P.: Sur les représentations modulaires de degré \(2\) de \(\operatornameGal(\overline\mathbbQ/\mathbbQ)\). Duke Math. Journal 54 (1987), no. 1, 179-230. · Zbl 0641.10026 · doi:10.1215/S0012-7094-87-05413-5 [20] Serre, J.-P.: Topics in Galois theory . Lecture notes prepared by Henri Darmon. Research Notes in Mathematics 1 . Jones and Bartlett Publishers, Boston, MA, 1992. · Zbl 0746.12001 [21] Shih, K.-Y.: On the construction of Galois extensions of function fields and number fields. Math. Ann. 207 (1974), 99-120. · Zbl 0279.12102 · doi:10.1007/BF01362150 [22] Shih, K.-Y.: \(p\)-division points on certain elliptic curves. Compositio Math. 36 (1978), no. 2, 113-129. · Zbl 0376.14010 [23] STNB: Corbes modulars: taules. Notes del Seminari de Teoria de Nombres de Barcelona, UB-UAB-UPC. Barcelona, 1992. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.