×

zbMATH — the first resource for mathematics

Arrangements of an \(M\)-quintic with respect to a conic that maximally intersects its odd branch. (English. Russian original) Zbl 1206.14082
St. Petersbg. Math. J. 19, No. 4, 625-674 (2008); translation from Algebra Anal. 19, No. 4, 174-242 (2007).
Summary: Under certain assumptions, the arrangements mentioned in the title are classified up to isotopy. Their algebraic realizability is discussed.

MSC:
14P05 Real algebraic sets
14H50 Plane and space curves
57R52 Isotopy in differential topology
57R19 Algebraic topology on manifolds and differential topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Brugallé, A bound on the number of jumps of real algebraic curves in \( \Sigma_n\), Preprint, 2006.
[2] A. I. Degtyarev and V. M. Kharlamov, Topological properties of real algebraic varieties: Rokhlin’s way, Uspekhi Mat. Nauk 55 (2000), no. 4(334), 129 – 212 (Russian, with Russian summary); English transl., Russian Math. Surveys 55 (2000), no. 4, 735 – 814. · Zbl 1014.14030 · doi:10.1070/rm2000v055n04ABEH000315 · doi.org
[3] T. Fiedler, Congruence mod 16 for symmetric M-curves (copy of a handwritten paper).
[4] S. Fiedler-Le Touzé and S. Yu. Orevkov, A flexible affine \?-sextic which is algebraically unrealizable, J. Algebraic Geom. 11 (2002), no. 2, 293 – 310. · Zbl 1054.14071
[5] V. Florens, On the Fox-Milnor theorem for the Alexander polynomial of links, Int. Math. Res. Not. 2 (2004), 55 – 67. · Zbl 1080.57013 · doi:10.1155/S1073792804130894 · doi.org
[6] M. A. Gushchin, Construction of some arrangements of conics and \( M\)-quintics with a point at infinity, Vestnik Nizhegorod. Gos. Univ. Mat. Vyp. 1(2) (2004), 43-52. (Russian)
[7] M. A. Gushchin, A conic and an \?-quintic with a point at infinity, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 329 (2005), no. Geom. i Topol. 9, 14 – 27, 195 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 140 (2007), no. 4, 502 – 510. · Zbl 1151.14336 · doi:10.1007/s10958-007-0430-9 · doi.org
[8] V. M. Kharlamov and O. Ya. Viro, Extensions of the Gudkov-Rohlin congruence, Topology and geometry — Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 357 – 406. · Zbl 0678.14004 · doi:10.1007/BFb0082784 · doi.org
[9] Anatoly B. Korchagin and Grigory M. Polotovskii, On arrangements of a plane real quintic curve with respect to a pair of lines, Commun. Contemp. Math. 5 (2003), no. 1, 1 – 24. · Zbl 1077.14568 · doi:10.1142/S0219199703000926 · doi.org
[10] -, On arrangements of a plane real quintic curve with respect to a pair of lines. II (in preparation). · Zbl 1077.14568
[11] A. B. Korchagin and E. I. Shustin, Sixth-degree affine curves and smoothings of a nondegenerate sixth-order singular point, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 6, 1181 – 1199, 1327 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 3, 501 – 520.
[12] S. M. Natanzon, Automorphisms of the Riemann surface of an \?-curve, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 82 – 83 (Russian). · Zbl 0394.14013
[13] S. Yu. Orevkov, Link theory and oval arrangements of real algebraic curves, Topology 38 (1999), no. 4, 779 – 810. · Zbl 0923.14032 · doi:10.1016/S0040-9383(98)00021-4 · doi.org
[14] S. Yu. Orevkov, Prospective conics and \?-quintics in general position with a maximally intersecting pair of ovals, Mat. Zametki 65 (1999), no. 4, 632 – 636 (Russian, with Russian summary); English transl., Math. Notes 65 (1999), no. 3-4, 528 – 532. · Zbl 0998.14025 · doi:10.1007/BF02675372 · doi.org
[15] S. Yu. Orevkov, Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves, J. Knot Theory Ramifications 10 (2001), no. 7, 1005 – 1023. · Zbl 1030.20026 · doi:10.1142/S0218216501001311 · doi.org
[16] S. Yu. Orevkov, Classification of flexible \?-curves of degree 8 up to isotopy, Geom. Funct. Anal. 12 (2002), no. 4, 723 – 755. · Zbl 1105.14080 · doi:10.1007/s00039-002-8264-6 · doi.org
[17] Stepan Yu. Orevkov, Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), no. 4, 517 – 531 (English, with English and French summaries). · Zbl 1078.14083
[18] -, Construction of arrangements of \( M\)-quartics and \( M\)-cubics with the maximal intersecting of an oval and the odd branch, Vestnik Nizhegorod. Gos. Univ. Mat. Modelirovanie Optim. Upravlenie Vyp. 1(25) (2002), 12-48. (Russian)
[19] Stepan Yu. Orevkov, Quasipositivity problem for 3-braids, Turkish J. Math. 28 (2004), no. 1, 89 – 93. · Zbl 1055.20029
[20] S. Yu. Orevkov and G. M. Polotovskiĭ, Projective \?-cubics and \?-quartics in general position with a maximally intersecting pair of ovals, Algebra i Analiz 11 (1999), no. 5, 166 – 184 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 11 (2000), no. 5, 837 – 852.
[21] S. Yu. Orevkov and E. I. Shustin, Flexible, algebraically unrealizable curves: rehabilitation of Hilbert-Rohn-Gudkov approach, J. Reine Angew. Math. 551 (2002), 145 – 172. · Zbl 1014.14028 · doi:10.1515/crll.2002.080 · doi.org
[22] S. Yu. Orevkov and E. I. Shustin, Pseudoholomorphic algebraically unrealizable curves, Mosc. Math. J. 3 (2003), no. 3, 1053 – 1083, 1200 – 1201 (English, with English and Russian summaries). Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday. · Zbl 1049.14044
[23] G. M. Polotovskiĭ, A catalogue of \?-splitting curves of order six, Dokl. Akad. Nauk SSSR 236 (1977), no. 3, 548 – 551 (Russian).
[24] Jean-Yves Welschinger, Courbes algébriques réelles et courbes flexibles sur les surfaces réglées de base \Bbb C\roman\Bbb P\textonesuperior , Proc. London Math. Soc. (3) 85 (2002), no. 2, 367 – 392 (French). · Zbl 1016.14019 · doi:10.1112/S0024611502013606 · doi.org
[25] V. I. Zvonilov, Complex topological invariants of real algebraic curves on a hyperboloid and an ellipsoid, Algebra i Analiz 3 (1991), no. 5, 88 – 108 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 3 (1992), no. 5, 1023 – 1042. · Zbl 0793.14020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.