Characteristically nilpotent Lie algebras and symplectic structures. (English) Zbl 1206.17009

Summary: We study symplectic structures on characteristically nilpotent Lie algebras (CNLAs) by computing the cohomology space \(H^2({\mathfrak g} ,k)\) for certain Lie algebras \(\mathfrak g\). Among these Lie algebras are filiform CNLAs of dimension \(n\geq 14\). It turns out that there are many examples of CNLAs which admit a symplectic structure. A generalization of a symplectic structure is an affine structure on a Lie algebra.


17B30 Solvable, nilpotent (super)algebras
53D05 Symplectic manifolds (general theory)
Full Text: DOI arXiv


[1] Burde D., Contemp. Math. 262 pp 159– (2000)
[2] DOI: 10.1142/S0129167X96000323 · Zbl 0868.57034
[3] DOI: 10.1006/jabr.1998.7714 · Zbl 0932.17005
[4] DOI: 10.1006/jabr.1996.0350 · Zbl 0866.17006
[5] DOI: 10.2307/2032832 · Zbl 0079.04802
[6] DOI: 10.1007/BF01077870 · Zbl 0519.17005
[7] DOI: 10.1016/S0022-4049(97)00096-0 · Zbl 0929.17004
[8] DOI: 10.1016/S0022-4049(99)90120-2 · Zbl 0966.17006
[9] Millionschikov D. V., Amer. Math. Soc. Transl. Ser. 2 pp 212– (2003)
[10] DOI: 10.1080/00927878008822445 · Zbl 0421.17004
[11] DOI: 10.1142/S0217732396000497 · Zbl 1022.81748
[12] DOI: 10.1016/S0022-4049(97)00217-X · Zbl 1072.17503
[13] DOI: 10.1016/0001-8708(77)90004-4 · Zbl 0364.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.