×

A counterexample for the geometric traveling salesman problem in the Heisenberg group. (English) Zbl 1206.28003

The authors prove that a sufficient condition for the compact sets of a Heisenberg group to be contained in a curve of finite length is not necessary.

MSC:

28A75 Length, area, volume, other geometric measure theory
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Ambrosio, L. and Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318 (2000), no. 3, 527-555. · Zbl 0966.28002
[2] Ambrosio, L. and Rigot, S.: Optimal mass transportation in the Heisenberg group. J. Funct. Anal. 208 (2004), no. 2, 261-301. · Zbl 1076.49023
[3] David, G. and Semmes, S.: Analysis of and on uniformly rectifiable sets . Mathematical Surveys and Monographs 38 . American Mathematical Society, Providence, RI, 1993. · Zbl 0832.42008
[4] Federer, H.: Geometric measure theory . Die Grundlehren der mathematischen Wissenschaften 153 . Springer-Verlag New York, New York, 1969. · Zbl 0176.00801
[5] Ferrari, F., Franchi, B. and Pajot, H.: The geometric traveling salesman problem in the Heisenberg group. Rev. Mat. Iberoam. 23 (2007), no. 2, 437-480. · Zbl 1142.28004
[6] Folland, G.B. and Stein, E.M.: Hardy spaces on homogeneous groups . Mathematical Notes 28 . Princeton University Press, Princeton, NJ, 1982. · Zbl 0508.42025
[7] Franchi, B., Serapioni, R. and Serra Cassano, F.: Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321 (2001), no. 3, 479-531. · Zbl 1057.49032
[8] Franchi, B., Serapioni, R. and Serra Cassano, F.: On the structure of finite perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13 (2003), no. 3, 421-466. · Zbl 1064.49033
[9] Gromov, M.: Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry , 79-323. Progr. Math. 144 . Birkhäuser, Basel, 1996. · Zbl 0864.53025
[10] Hahlomaa, I.: Menger curvature and Lipschitz parametrizations in metric spaces. Fund. Math. 185 (2005), no. 2, 143-169. · Zbl 1077.54016
[11] Hahlomaa, I.: Menger curvature and Lipschitz parametrizations in metric spaces . Report. University of Jyväskylä Department of Mathematics and Statistics 98 . University of Jyväskylä, Jyväskylä, 2005. · Zbl 1083.54523
[12] Jones, P.W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102 (1990), no. 1, 1-15. · Zbl 0731.30018
[13] Montgomery, R.: A Tour of Subriemannian Geometries, their Geodesics and Applications . Mathematical Surveys and Monographs 91 . American Mathematical Society, Providence, RI, 2002. · Zbl 1044.53022
[14] Monti, R.: Some properties of Carnot-Carathéodory balls in the Heisenberg group. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (2001), no. 3, 155-167. · Zbl 1197.53064
[15] Okikiolu, K.: Characterization of subsets of rectifiable curves in \(\mathbbR^n\). J. London Math. Soc. (2) 46 (1992), no. 2, 336-348. · Zbl 0758.57020
[16] Schul, R.: Analyst’s traveling salesman theorems. A survey. In In the tradition of Ahlfors-Bers. IV , 209-220. Contemp. Math. 432 . Amer. Math. Soc., Providence, RI, 2007. · Zbl 1187.49039
[17] Schul, R.: Subsets of rectifiable curves in Hilbert space-the analyst’s TSP. J. Anal. Math. 103 (2007), 331-375. · Zbl 1152.28006
[18] Vergil: Aeneis . Reclam, 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.