zbMATH — the first resource for mathematics

Spin wavelets on the sphere. (English) Zbl 1206.42039
The authors generalize existing approaches for wavelets on spheres to situations where sections of line bundles, rather than ordinary scalar-valued functions, are considered. In particular, they introduce needlet-type spin wavelets as an extension of the needlet approach recently introduced by Narcowich, Petrushev, and Ward, as well as Geller and Mayeli. The authors discuss localization properties in the real and harmonic domains, and investigate stochastic properties for the analysis of spin random fields. As the authors explain, the results are strongly motivated by cosmological applications, in particular in connection to the analysis of Cosmic Microwave Background polarization data.

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
60G60 Random fields
33C55 Spherical harmonics
14C21 Pencils, nets, webs in algebraic geometry
83F05 Cosmology
58J05 Elliptic equations on manifolds, general theory
Full Text: DOI
[1] Antoine, J.-P., Vandergheynst, P.: Wavelets on the sphere: a group-theoretic approach. Appl. Comput. Harmon. Anal. 7, 262–291 (1999) · Zbl 0945.42023 · doi:10.1006/acha.1999.0272
[2] Antoine, J.-P., Vandergheynst, P.: Wavelets on the sphere and other conic sections. J. Fourier Anal. Appl. 13, 369–386 (2007) · Zbl 1143.42036 · doi:10.1007/s00041-006-6013-0
[3] Antoine, J.-P., Demanet, L., Jacques, L., Vandergheynst, P.: Wavelets on the sphere: implementation and approximations. Appl. Comput. Harmon. Anal. 13, 177–200 (2002) · Zbl 1021.42022 · doi:10.1016/S1063-5203(02)00507-9
[4] Baldi, P., Marinucci, D., Varadarajan, V.S.: On the characterization of isotropic Gaussian fields on homogeneous spaces of compact groups. Electron. Commun. Probab., 291–302 (2007) · Zbl 1128.60039
[5] Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D.: Asymptotics for spherical needlets. Ann. Stat. 37, 1150–1171 (2009). arxiv:math/0606599 · Zbl 1160.62087 · doi:10.1214/08-AOS601
[6] Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D.: Subsampling needlet coefficients on the sphere. Bernoulli 15, 438–463 (2009). arxiv:0706.4169 · Zbl 1200.62118 · doi:10.3150/08-BEJ164
[7] Cabella, P., Kamionkowski, M.: Theory of cosmic microwave background polarization. arXiv:astro-ph/0403392v2 , 18 Mar 2005
[8] Cabella, P., Hansen, F.K., Marinucci, D., Pagano, D., Vittorio, N.: Search for non-Gaussianity in pixel, harmonic, and wavelet space: compared and combined. Phys. Rev. D 69, 063007 (2004) · doi:10.1103/PhysRevD.69.063007
[9] Cruz, M., Cayon, L., Martinez-Gonzalez, E., Vielva, P., Jin, J.: The non-Gaussian cold spot in the 3-year WMAP data. Astrophys. J. 655, 11–20 (2007) · doi:10.1086/509703
[10] Curtis, W.D., Lerner, D.E.: Complex line bundles in relativity. J. Math. Phys 19, 874–877 (1978) · Zbl 0402.53041 · doi:10.1063/1.523750
[11] Davidson, J.: Stochastic Limit Theory. Cambridge University Press, Cambridge (1994)
[12] Delabrouille, J., Cardoso, J.-F., Le Jeune, M., Betoule, M., Fay, G., Guilloux, F.: A full sky, low foreground, high resolution CMB map from WMAP. Astron. Astrophys. 493, 835–857 (2009). arxiv:0807.0773 · doi:10.1051/0004-6361:200810514
[13] Dodelson, S.: Modern Cosmology. Academic Press, New York (2003)
[14] Eastwood, M., Tod, P.: Edth–a differential operator on the sphere. Math. Proc. Camb. Philos. Soc. 92, 317–330 (1982) · Zbl 0511.53026 · doi:10.1017/S0305004100059971
[15] Fay, G., Guilloux, F.: Consistency of a needlet spectral estimator on the sphere (2008). arxiv:0807.2162
[16] Fay, G., Guilloux, F., Betoule, M., Cardoso, J.-F., Delabrouille, J., Le Jeune, M.: CMB power spectrum estimation using wavelets. Phys. Rev. D 78, 083013 (2008). arxiv:0807.1113 · doi:10.1103/PhysRevD.78.083013
[17] Geller, D., Mayeli, A.: Continuous wavelets and frames on stratified Lie groups I. J. Fourier Anal. Appl. 12, 543–579 (2006) · Zbl 1105.42029 · doi:10.1007/s00041-006-6002-4
[18] Geller, D., Mayeli, A.: Continuous wavelets on compact manifolds. Math. Z. 262, 895–927 (2009) · Zbl 1193.42123 · doi:10.1007/s00209-008-0405-7
[19] Geller, D., Mayeli, A.: Nearly tight frames and space-frequency analysis on compact manifolds. Math. Z. 263, 235–264 (2009) · Zbl 1193.42124 · doi:10.1007/s00209-008-0406-6
[20] Geller, D., Mayeli, A.: Besov spaces and frames on compact manifolds. Indiana Univ. Math. J. (2009). www.iumj.indiana.edu/IUMJ/Preprints/3741.pdf · Zbl 1187.46027
[21] Geller, D., Mayeli, A.: Nearly tight frames for spin wavelets on the sphere. Sampl. Theory Signal Image Process. (to appear). arXiv:0907.3164 · Zbl 1261.42050
[22] Geller, D., Hansen, F.K., Marinucci, D., Kerkyacharian, G., Picard, D.: Spin needlets for cosmic microwave background polarization data analysis. Phys. Rev. D 78, 123533 (2008) · doi:10.1103/PhysRevD.78.123533
[23] Geller, D., Lan, X., Marinucci, D.: Spin needlets spectral estimation. Electron. J. Stat. 3, 1497–1530 (2009). arXiv:0907.3369 · Zbl 1326.62195 · doi:10.1214/09-EJS448
[24] Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: Spin-s spherical harmonics and J. Math. Phys. 8, 2155–2161 (1967) · Zbl 0155.57402 · doi:10.1063/1.1705135
[25] Gorski, K.M., Lilje, P.B.: Foreground subtraction of cosmic microwave background maps using WI-FIT (Wavelet based high resolution fitting of internal templates). Astrophys. J. 648, 784–796 (2006) · doi:10.1086/506015
[26] Guilloux, F., Fay, G., Cardoso, J.-F.: Practical wavelet design on the sphere. Appl. Comput. Harmon. Anal. 26, 143–160 (2009). arxiv:0706.2598 · Zbl 1162.42017 · doi:10.1016/j.acha.2008.03.003
[27] Hinshaw, G., Weiland, J.L., Hill, R.S., Odegard, N., Larson, D., Bennett, C.L., Dunkley, J., Gold, B., Greason, M.R., Jarosik, N., Komatsu, E., Nolta, M.R., Page, L., Spergel, D.N., Wollack, E., Halpern, M., Kogut, A., Limon, M., Meyer, S.S., Tucker, G.S., Wright, E.L.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: data processing, sky maps, and basic results. Astrophys. J. Suppl. 180(2), 225–245 (2009). arXiv:0803.0732 · doi:10.1088/0067-0049/180/2/225
[28] Hörmander, L.: Introduction to Complex Analysis in Several Variables. North-Holland, Amsterdam (1973) · Zbl 0271.32001
[29] Kamionkowski, M., Kosowsky, A., Stebbins, A.: Statistics of cosmic microwave background polarization. Phys. Rev. D 55(12), 7368–7388 (1997) · doi:10.1103/PhysRevD.55.7368
[30] Lan, X., Marinucci, D.: The needlets bispectrum. Electron. J. Stat. 2, 332–367 (2008) · Zbl 1320.62106 · doi:10.1214/08-EJS197
[31] Lan, X., Marinucci, D.: On the dependence structure of wavelet coefficients for spherical random fields. Stoch. Process. Appl. 119, 3479–3766 (2009). arxiv:0805.4154 · Zbl 1177.60053 · doi:10.1016/j.spa.2009.07.005
[32] Laureijs, R.J. (On Behalf of The Planck Collaboration): Polarization maps at CMB frequencies from Planck. EAS Publ. Ser. 23, 247–254 (2007) · doi:10.1051/eas:2007015
[33] Marinucci, D.: High-resolution asymptotics for the angular bispectrum of spherical random fields. Ann. Stat. 34, 1–41 (2006) · Zbl 1104.60020 · doi:10.1214/009053605000000903
[34] Marinucci, D., Pietrobon, D., Balbi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P., Picard, D., Vittorio, N.: Spherical needlets for CMB data analysis. Mon. Not. R. Astron. Soc. 383, 539–545 (2008)
[35] Mayeli, A.: Asymptotic uncorrelation for Mexican needlets. J. Math. Anal. Appl. (2009). doi: 10.1016/j.jmaa.2009.07.044 · Zbl 1185.42038
[36] McEwen, J.D., Hobson, M.P., Lasenby, A.N., Mortlock, D.J.: A high-significance detection of non-Gaussianity in the WMAP 3-year data using directional spherical wavelets. Mon. Not. R. Astron. Soc. 371(123002), L50–L54 (2006) · doi:10.1111/j.1745-3933.2006.00206.x
[37] McEwen, J.D., Vielva, P., Hobson, M.P., Martinez-Gonzalez, E., Lasenby, A.N.: Detection of the integrated Sachs-Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets. Mon. Not. R. Astron. Soc. 376(3), 1211–1226 (2007) · doi:10.1111/j.1365-2966.2007.11505.x
[38] Narcowich, F.J., Petrushev, P., Ward, J.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006) · Zbl 1143.42034 · doi:10.1137/040614359
[39] Narcowich, F.J., Petrushev, P., Ward, J.: Decomposition of Besov and Triebel-Lizorkin spaces on the sphere. J. Funct. Anal. 238, 530–564 (2006) · Zbl 1114.46026
[40] Newman, E.T., Penrose, R.: Notes on the Bondi-Metzner-Sachs group. J. Math. Phys. 7, 863–870 (1966) · doi:10.1063/1.1931221
[41] Parthasarathy, K.R.: Probability Measures on Metric Spaces. AMS Chelsea Publishing, New York (2005) (Reprint of the 1967 original) · Zbl 1188.60001
[42] Pietrobon, D., Balbi, A., Marinucci, D.: Integrated Sachs-Wolfe effect from the cross correlation of WMAP3 year and the NRAO VLA sky survey data: new results and constraints on dark energy. Phys. Rev. D 74, 043524 (2006) · doi:10.1103/PhysRevD.74.043524
[43] Pietrobon, D., Amblard, A., Balbi, A., Cabella, P., Cooray, A., Marinucci, D.: Needlet detection of features in WMAP CMB sky and the impact on anisotropies and hemispherical asymmetries. Phys. Rev. D 78, 103504 (2008). arXiv:0809.0010
[44] Schwartzman, A., Mascarenhas, W., Taylor, J.: Inference for eigenvalues and eigenvectors of Gaussian symmetric matrices. Ann. Stat. 36, 2886–2919 (2008) · Zbl 1196.62067 · doi:10.1214/08-AOS628
[45] Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)
[46] Vielva, P., Martinez-Gonzalez, E., Barreiro, B., Sanz, J., Cayon, L.: Detection of non-Gaussianity in the WMAP first year data using spherical wavelets. Astrophys. J. 609, 22–34 (2004) · doi:10.1086/421007
[47] Vilenkin, N.J., Klimyk, A.U.: Representations of Lie Groups and Special Functions. Kluwer Academic, Dordrecht (1991) · Zbl 0742.22001
[48] Wiaux, Y., McEwen, J.D., Vielva, P.: Complex data processing: fast wavelet analysis on the sphere. J. Fourier Anal. Appl. 13, 477–494 (2007) · Zbl 1124.65125 · doi:10.1007/s00041-006-6917-9
[49] Wiaux, I., McEwen, J.D., Vandergheynst, P., Blanc, O.: Exact reconstruction with directional wavelets on the sphere. Mon. Not. R. Astron. Soc. 388(2), 770–788 (2008) · doi:10.1111/j.1365-2966.2008.13448.x
[50] Zaldarriaga, M., Seliak, U.: All-sky analysis of polarization in the microwave background. Phys. Rev. D 33, 1831–1840 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.