×

A shrinking projection method for generalized mixed equilibrium problems, variational inclusion problems and a finite family of quasi-nonexpansive mappings. (English) Zbl 1206.47077

Summary: The purpose of this paper is to consider a shrinking projection method for finding a common element of the set of solutions of generalized mixed equilibrium problems, the set of fixed points of a finite family of quasi-nonexpansive mappings, and the set of solutions of variational inclusion problems. Then, we prove a strong convergence theorem of the iterative sequence generated by the shrinking projection method under some suitable conditions in a real Hilbert space. Our results improve and extend recent results announced by Peng et al. (2008), Takahashi et al. (2008), S. Takahashi and W. Takahashi (2008), and many others.

MSC:

47J25 Iterative procedures involving nonlinear operators
47J22 Variational and other types of inclusions
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Brézis, H., Opérateur maximaux monotones, No. 5 (1973), Amsterdam, The Netherlands
[2] Lemaire, B., Which fixed point does the iteration method select?, No. 452, 154-167 (1997), Berlin, Germany · Zbl 0882.65042
[3] Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. The Mathematics Student 1994, 63(1-4):123-145. · Zbl 0888.49007
[4] Chadli O, Schaible S, Yao JC: Regularized equilibrium problems with application to noncoercive hemivariational inequalities. Journal of Optimization Theory and Applications 2004, 121(3):571-596. · Zbl 1107.91067 · doi:10.1023/B:JOTA.0000037604.96151.26
[5] Chadli O, Wong NC, Yao JC: Equilibrium problems with applications to eigenvalue problems. Journal of Optimization Theory and Applications 2003, 117(2):245-266. 10.1023/A:1023627606067 · Zbl 1141.49306 · doi:10.1023/A:1023627606067
[6] Konnov IV, Schaible S, Yao JC: Combined relaxation method for mixed equilibrium problems. Journal of Optimization Theory and Applications 2005, 126(2):309-322. 10.1007/s10957-005-4716-0 · Zbl 1110.49028 · doi:10.1007/s10957-005-4716-0
[7] Moudafi, A.; Théra, M., Proximal and dynamical approaches to equilibrium problems, No. 477, 187-201 (1999), Berlin, Germany · Zbl 0944.65080 · doi:10.1007/978-3-642-45780-7_12
[8] Zeng L-C, Wu S-Y, Yao J-C: Generalized KKM theorem with applications to generalized minimax inequalities and generalized equilibrium problems. Taiwanese Journal of Mathematics 2006, 10(6):1497-1514. · Zbl 1121.49005
[9] Ceng LC, Sahu DR, Yao JC: Implicit iterative algorithms for asymptotically nonexpansive mappings in the intermediate sense and Lipschitz-continuous monotone mappings. Journal of Computational and Applied Mathematics 2010, 233(11):2902-2915. 10.1016/j.cam.2009.11.035 · Zbl 1188.65076 · doi:10.1016/j.cam.2009.11.035
[10] Ceng L-C, Yao J-C: A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem. Nonlinear Analysis: Theory, Methods & Applications 2010, 72(3-4):1922-1937. 10.1016/j.na.2009.09.033 · Zbl 1179.49003 · doi:10.1016/j.na.2009.09.033
[11] Ceng LC, Petruşel A, Yao JC: Iterative approaches to solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. Journal of Optimization Theory and Applications 2009, 143(1):37-58. 10.1007/s10957-009-9549-9 · Zbl 1188.90256 · doi:10.1007/s10957-009-9549-9
[12] Cianciaruso, F.; Marino, G.; Muglia, L.; Yao, Y., A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem, No. 2010, 19 (2010) · Zbl 1203.47043
[13] Chadli O, Liu Z, Yao JC: Applications of equilibrium problems to a class of noncoercive variational inequalities. Journal of Optimization Theory and Applications 2007, 132(1):89-110. 10.1007/s10957-006-9072-1 · Zbl 1158.35050 · doi:10.1007/s10957-006-9072-1
[14] Cholamjiak, P.; Suantai, S., A new hybrid algorithm for variational inclusions, generalized equilibrium problems, and a finite family of quasi-nonexpansive mappings, No. 2009, 20 (2009) · Zbl 1186.47060
[15] Jaiboon C, Kumam P: A general iterative method for addressing mixed equilibrium problems and optimization problems. Nonlinear Analysis, Theory, Methods and Applications 2010, 73: 1180-1202. 10.1016/j.na.2010.04.041 · Zbl 1205.49011 · doi:10.1016/j.na.2010.04.041
[16] Jaiboon, C.; Kumam, P., Strong convergence for generalized equilibrium problems, fixed point problems and relaxed cocoercive variational inequalities, No. 2010, 43 (2010) · Zbl 1187.47048
[17] Jaiboon C, Chantarangsi W, Kumam P: A convergence theorem based on a hybrid relaxed extragradient method for generalized equilibrium problems and fixed point problems of a finite family of nonexpansive mappings. Nonlinear Analysis: Hybrid Systems 2010, 4(1):199-215. 10.1016/j.nahs.2009.09.009 · Zbl 1179.49011 · doi:10.1016/j.nahs.2009.09.009
[18] Kumam P, Jaiboon C: A new hybrid iterative method for mixed equilibrium problems and variational inequality problem for relaxed cocoercive mappings with application to optimization problems. Nonlinear Analysis: Hybrid Systems 2009, 3(4):510-530. 10.1016/j.nahs.2009.04.001 · Zbl 1221.49010 · doi:10.1016/j.nahs.2009.04.001
[19] Peng J-W, Yao J-C: A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems. Taiwanese Journal of Mathematics 2008, 12(6):1401-1432. · Zbl 1185.47079
[20] Peng J-W, Yao J-C: Some new iterative algorithms for generalized mixed equilibrium problems with strict pseudo-contractions and monotone mappings. Taiwanese Journal of Mathematics 2009, 13(5):1537-1582. · Zbl 1193.47068
[21] Yao, Y.; Liou, Y-C; Yao, J-C, A new hybrid iterative algorithm for fixed-point problems, variational inequality problems, and mixed equilibrium problems, No. 2008, 15 (2008) · Zbl 1203.47087
[22] Yao, Y.; Liou, Y-C; Wu, Y-J, An extragradient method for mixed equilibrium problems and fixed point problems, No. 2009, 15 (2009) · Zbl 1203.47086
[23] Takahashi W, Takeuchi Y, Kubota R: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. Journal of Mathematical Analysis and Applications 2008, 341(1):276-286. 10.1016/j.jmaa.2007.09.062 · Zbl 1134.47052 · doi:10.1016/j.jmaa.2007.09.062
[24] Takahashi S, Takahashi W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Analysis: Theory, Methods & Applications 2008, 69(3):1025-1033. 10.1016/j.na.2008.02.042 · Zbl 1142.47350 · doi:10.1016/j.na.2008.02.042
[25] Zhang S-S, Lee JHW, Chan CK: Algorithms of common solutions to quasi variational inclusion and fixed point problems. Applied Mathematics and Mechanics. English Edition 2008, 29(5):571-581. 10.1007/s10483-008-0502-y · Zbl 1196.47047 · doi:10.1007/s10483-008-0502-y
[26] Peng, J-W; Wang, Y.; Shyu, DS; Yao, J-C, Common solutions of an iterative scheme for variational inclusions, equilibrium problems, and fixed point problems, No. 2008, 15 (2008) · Zbl 1161.65050
[27] Kumam, P.; Katchang, P., A general iterative method of fixed points for mixed equilibrium problems and variational inclusion problems, No. 2010, 25 (2010) · Zbl 1189.47066
[28] Acedo GL, Xu H-K: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Analysis: Theory, Methods & Applications 2007, 67(7):2258-2271. 10.1016/j.na.2006.08.036 · Zbl 1133.47050 · doi:10.1016/j.na.2006.08.036
[29] Opial Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bulletin of the American Mathematical Society 1967, 73: 591-597. 10.1090/S0002-9904-1967-11761-0 · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[30] Takahashi W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama, Japan; 2000. · Zbl 0997.47002
[31] Peng, J-W; Liou, YC; Yao, JC, An iterative algorithm combining viscosity method with parallel method for a generalized equilibrium problem and strict pseudocontractions, No. 2009, 21 (2009) · Zbl 1163.91463
[32] Atsushiba S, Takahashi W: Strong convergence theorems for a finite family of nonexpansive mappings and applications. Indian Journal of Mathematics 1999, 41(3):435-453. · Zbl 1055.47514
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.