zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimization shape of variable capacitance micromotor using differential evolution algorithm. (English) Zbl 1206.49047
Summary: A new method for optimum shape design of Variable Capacitance Micromotor (VCM) using Differential Evolution (DE), a stochastic search algorithm, is presented. In this optimization exercise, the objective function aims to maximize torque value and minimize the torque ripple, where the geometric parameters are considered to be the variables. The optimization process is carried out using a combination of DE algorithm and FEM analysis. Fitness value is calculated by FEM analysis using {\tt COMSOL3.4}, and the DE algorithm is realized by {\tt MATLAB7.4}. The proposed method is applied to a VCM with 8 poles at the stator and 6 poles at the rotor. The results show that the optimized micromotor using DE algorithm had higher torque value and lower torque ripple, indicating the validity of this methodology for VCM design.

MSC:
49Q10Optimization of shapes other than minimal surfaces
93E25Computational methods in stochastic control
90C15Stochastic programming
WorldCat.org
Full Text: DOI EuDML
References:
[1] S. F. Bart, M. Mehregany, L. S. Tavrow, J. H. Lang, and S. D. Senturia, “Electric micromotor dynamics,” IEEE Transactions on Electron Devices, vol. 39, no. 3, pp. 566-575, 1992. · doi:10.1109/16.123479
[2] T. C. Neugebauer, D. J. Perreault, J. H. Lang, and C. Livermore, “A Six-Phase Multilevel Inverter for MEMS Electrostatic Induction Micromotors,” IEEE Transactions on Circuits and Systems II, vol. 51, no. 2, pp. 49-56, 2004. · doi:10.1109/TCSII.2003.822419
[3] W. Zhang, G. Meng, and H. Li, “Electrostatic micromotor and its reliability,” Microelectronics Reliability, vol. 45, no. 7-8, pp. 1230-1242, 2005. · doi:10.1016/j.microrel.2004.12.017
[4] V. Behjat and A. Vahedi, “Minimizing the torque ripple of variable capacitance electrostatic micromotors,” Journal of Electrostatics, vol. 64, no. 6, pp. 361-367, 2006. · doi:10.1016/j.elstat.2005.09.003
[5] T. B. Johansson, M. Van Dessel, R. Belmans, and W. Geysen, “Technique for finding the optimum geometry of electrostatic micromotors,” IEEE Transactions on Industry Applications, vol. 30, no. 4, pp. 912-919, 1994. · doi:10.1109/28.297907
[6] R. Sarker, M. Mohammadian, and X. Ya, Eds., Evolutionary Optimization, International Series in Operations Research & Management Science, 48, Kluwer Academic Publishers, Boston, Mass, USA, 2002.
[7] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series, Springer, Berlin, Germany, 2005. · Zbl 1186.90004
[8] W. K. S. Pao, W. S. H. Wong, and A. M. K. Lai, “An explicit drive algorithm for aiding the design of firing sequence in side-drive micromotor,” Communications in Numerical Methods in Engineering, vol. 24, no. 12, pp. 2131-2136, 2008. · Zbl 1152.78338 · doi:10.1002/cnm.1100
[9] S. S. Irudayaraj and A. Emadi, “Micromachines: principles of operation, dynamics, and control,” in Proceedings of IEEE International Conference on Electric Machines and Drives, pp. 1108-1115, May 2005.
[10] F. Delfino and M. Rossi, “A new FEM approach for field and torque simulation of electrostatic microactuators,” Journal of Microelectromechanical Systems, vol. 11, no. 4, pp. 362-371, 2002. · doi:10.1109/JMEMS.2002.800931
[11] L. S. Fan, YU. C. Tai, and R. S. Muller, “IC-processed electrostatic micro-motors,” in Proceedings of IEEE International Electron Devices Meeting, pp. 666-669, December 1988.
[12] A. Jindal, M. Krishnamurthy, and B. Fahimi, “Modeling and analysis of a micro variable capacitance electromechanical energy converter,” in Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM ’06), pp. 358-363, May 2006. · doi:10.1109/SPEEDAM.2006.1649798
[13] S. Wiak, P. Di Barba, and A. Savini, “3-D computer aided analysis of the ’Berkeley’ electrostatic micromotor,” IEEE Transactions on Magnetics, vol. 31, no. 3, pp. 2108-2111, 1995. · Zbl 0850.68322
[14] V. Behjat and A. Vahedi, “Analysis and optimization of MEMS electrostatic microactuator,” in Proceedings of the 3rd International Conference of Young Scientists on Perspective Technologies and Methods in MEMS Design (MEMSTECH ’07), pp. 20-25, May 2007. · doi:10.1109/MEMSTECH.2007.4283417
[15] L. L. Schumaker, Spline Functions: Basic Theory, Cambridge Mathematical Library, chapter 1, Cambridge University Press, Cambridge, UK, 3rd edition, 2007. · Zbl 1185.41001 · doi:10.1017/CBO9780511721588
[16] N. G. Milne, S. J. E. Yang, A. J. Sangster, H. Ziad, and S. Spirkovitch, “Determination of the forces present in an electrostatic micromotor,” in Proceedings of IEEE International Conference on Electrical Machines and Drives, pp. 9-14, 1993.
[17] R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics, IEEE Press, New York, NY, USA, 2007.
[18] R. Storn and K.V Price, “Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces,” Tech. Rep. TR-95-012, International Computational Science Institute, Berkley, Mich, USA, 1995. · Zbl 0888.90135
[19] D. Corne, M. Dorigo, and F. Glover, New Ideas in Optimization, McGraw-Hill, London, UK, 1999.