×

zbMATH — the first resource for mathematics

End-to-end gluing of constant mean curvature hypersurfaces. (English) Zbl 1206.53010
The author proves the following: Given two nondegenerate constant mean curvature (CMC) hypersurfaces with finitely many Delaunay ends. Assume each has an end of necksize \(\tau\). Then the hypersurface formed by gluing their matching ends can be perturbed to a CMC “end-to-end connected sum”. This is one in a series of papers by the author and F. Pacard, which produce non-trivial examples to apply this connected sum to, and study the resulting moduli space. In the case of CMC surfaces, these results were proved by Ratzkin’s in his PHD Thesis.

MSC:
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Delaunay (C.).— Sur la surface de révolution dont la courbure moyenne est constante, Jour. de Mathématique, 6, p. 309-320 (1841).
[2] Eells (J.).— The surfaces of Delaunay , Math. Intelligencer 9, no.1, p. 53-57 (1987). · Zbl 0605.53002
[3] Fakhi (S.) and Pacard (F.).— Existence result for minimal hypersurfaces with prescribed finite number of planar end , Manuscripta Mathematica, vol 103, issu 4, p. 465-512 (2000). · Zbl 0992.53011
[4] Hsiang (W. Y.) and Yu (W. C.).— A generalization of a theorem of Delaunay, J. Differ. Geom. 16, No. 2, p. 161-177 (1981). · Zbl 0504.53044
[5] Jleli (M.).— Moduli space theory of constant mean curvature hypersurfaces. Journal of Advanced Nonlinear Studies, 9 p. 29-68 (2009). · Zbl 1180.53007
[6] Jleli (M.) and Pacard (F.).— Construction of constant mean curvature hypersurfaces with prescribed finite number of Delaunay end. To appear.
[7] Jleli (M.) and Pacard (F.).— An end-to-end construction for compact constant mean curvature surfaces Pacific Journal of Mathematics Vol. 221, No. 1, p. 81-108 (2005). · Zbl 1110.53043
[8] Kapouleas (N.).— Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. (2) 131, p. 239-330 (1990). · Zbl 0699.53007
[9] Kapouleas (N.).— Compact constant mean curvature surfaces in Euclidean three-space, J. Differ. Geom. 33, No. 3, p. 683-715 (1991). · Zbl 0727.53063
[10] Kapouleas (N.).— Constant mean curvature surfaces constructed by fusing Went tori, Invent. Math. 119, p. 443-518 (1995). · Zbl 0840.53005
[11] Katsuei (K.).— Surfaces of revolution with prescribed mean curvature. Tohoku. Math. J ser 32, p. 147-153 (1980). · Zbl 0431.53005
[12] Katsuei (K.).— Surfaces of revolution with prescribed mean curvature. Tohoku. Math. J ser 32, p. 147-153 (1980). · Zbl 0431.53005
[13] Kusner (R.).— Bubbles conservations laws and balanced diagram , Geometric analysis and Computer graphics, (1991) 120-137. Springer-Verlag.
[14] Kusner (R.), Mazzeo (R.) and Pollack (D.).— The moduli spaces of complete embeeded constant mean curvature surfaces , Geom. Funct. Anal. 6, p. 120-137 (1996). · Zbl 0966.58005
[15] Mazzeo (R.) and Pacard (F.).— Constant mean curvature surfaces with Delaunay ends, Comm. Anal. Geom. 9No. 1 p. 169-237 (2001). · Zbl 1005.53006
[16] Mazzeo (R.), Pacard (F.) and Pollack (D.).— Connected sums of constant mean curvature surfaces in Euclidiean 3 space, J.Reine Ang.Math. 536, p. 115.165 (2001). · Zbl 0972.53010
[17] Mazzeo (R.), Pacard (F.) and Pollack (D.).— The conformal theory of Alexandrov embedded constant mean curvature surfaces in \(\mathbb{R}^3\), in Global theory of minimal surfaces, edited by D. Hoffman, Clay Mathematics Proceedings 2, Amer. Math. Soc, Providence, p. 525-559 (2005). · Zbl 1101.53006
[18] Mazzeo (R.), Pollack (D.) and Uhlenbeck (K.).— Moduli spaces of singular Yammabe metrics , J. Amer. Math. 9, p. 303-344 (1996). · Zbl 0849.58012
[19] Ratzkin (J.).— An end-to-end gluing construction for surfaces of constant mean curvature, PHD Thesis, University of Washington (2001).
[20] Rosenberg (H.).— Hypersurfaces of constant mean curvature in space forms, Bull. Sc. math, série 2, 117, p. 211-239 (1993). · Zbl 0787.53046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.