×

Convexity package for momentum maps on contact manifolds. (English) Zbl 1206.53082

E. Lerman [Ill. J. Math. 46, No. 1, 171–184 (2002; Zbl 1021.53061)] gave a theorem analogous to the convexity theorem for Hamiltonian torus actions in contact geometry when the torus orbits are transverse to the contact distribution and asked whether the transversality condition is necessary. The authors give a “convexity package” for contact manifolds and prove the following:
Theorem. Let a torus \(T\) act on a cooriented compact connected contact manifold \(M\) with contact momentum map \(\Psi :M\times R_{>0}\rightarrow t^{\ast }\), where \(t^{\ast }\) is the dual of the Lie algebra of \(T\). Assume that the action is effective and the torus has dimension grater than \(2\). Then: 7mm
(1)
Let \(y_{0}\) and \(y_{1}\) be any two points in \(M\times R_{>0}\). If the action is transverse (\(0\notin \text{image}\Psi \)), assume that the origin is not contained in the segment \([\Psi (y_{0}),\Psi (y_{1})]\). If the action is not transverse (\(0\in \text{image}\Psi \)), assume that \(\Psi (y_{0})\) and \(\Psi (y_{1})\) are not both zero. Then there exists a path \(\gamma :[0,1]\rightarrow M\times R_{>0}\) such that \(\gamma (0)=y_{0}\) and \(\gamma (1)=y_{1}\) and such that \(\Psi\circ \gamma :[0,1]\rightarrow t^{\ast }\) is a weakly monotone parametrization of the (possibly degenerate) segment \([\Psi (y_{0}),\Psi(y_{1})]\).
(2)
The momentum map is open as a map to its image.
Consequently: 7mm
(3)
The momentum cone \(C(\Psi )=\left\{ 0\right\} \cup \Psi (M\times R_{>0})\) is convex.
(4)
The nonzero level sets, \(\Psi ^{-1}(\mu )\), for \(\mu \neq 0\), are connected.
(5)
Let \(A\) be a convex subset of \(t^{\ast }\). If the action is transverse, suppose that \(0\notin A\). If the action is not transverse, suppose that \(A\neq \left\{ 0\right\} \). Then the preimage \(\Psi ^{-1}(A)\) is connected.
Moreover:7mm
(6)
The momentum cone \(C(\Psi )\) is a convex polyhedral cone. The authors also analyze examples with \(\dim T\leq 2\).

MSC:

53D10 Contact manifolds (general theory)
53D20 Momentum maps; symplectic reduction
52B99 Polytopes and polyhedra

Citations:

Zbl 1021.53061
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] C Albert, Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys. 6 (1989) 627 · Zbl 0712.53017
[2] M F Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982) 1 · Zbl 0482.58013
[3] A Banyaga, P Molino, Géométrie des formes de contact complètement intégrables de type toriques, Univ. Montpellier II (1993) 1 · Zbl 0783.58021
[4] A Barvinok, A course in convexity, Graduate Studies in Math. 54, Amer. Math. Soc. (2002) · Zbl 1014.52001
[5] M Berger, Geometry. I, Universitext, Springer (1987)
[6] M Berger, Geometry. II, Universitext, Springer (1987)
[7] P Birtea, J P Ortega, T S Ratiu, A local-to-global principle for convexity in metric spaces, J. Lie Theory 18 (2008) 445 · Zbl 1148.53030
[8] P Birtea, J P Ortega, T S Ratiu, Openness and convexity for momentum maps, Trans. Amer. Math. Soc. 361 (2009) 603 · Zbl 1163.53053
[9] C Bjorndahl, Y Karshon, Revisiting Tietze-Nakajima - local and global convexity for maps, to appear in the Canad. J. Math. · Zbl 1198.53094
[10] C P Boyer, K Galicki, A note on toric contact geometry, J. Geom. Phys. 35 (2000) 288 · Zbl 0984.53032
[11] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer (1999) · Zbl 0988.53001
[12] M Condevaux, P Dazord, P Molino, Géométrie du moment, Publ. Dép. Math. Nouvelle Sér. B 88, Univ. Claude-Bernard (1988) 131
[13] L Danzer, B Grünbaum, V Klee, Helly’s theorem and its relatives, Amer. Math. Soc. (1963) 101 · Zbl 0132.17401
[14] H Geiges, Constructions of contact manifolds, Math. Proc. Cambridge Philos. Soc. 121 (1997) 455 · Zbl 0882.57007
[15] H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Math. 109, Cambridge Univ. Press (2008) · Zbl 1153.53002
[16] V Guillemin, R Sjamaar, Convexity properties of Hamiltonian group actions, CRM Monogr. Ser. 26, Amer. Math. Soc. (2005) · Zbl 1084.53069
[17] V Guillemin, S Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982) 491 · Zbl 0503.58017
[18] V Guillemin, S Sternberg, Homogeneous quantization and multiplicities of group representations, J. Funct. Anal. 47 (1982) 344 · Zbl 0733.58021
[19] J Hilgert, K H Neeb, W Plank, Symplectic convexity theorems, Sem. Sophus Lie 3 (1993) 123 · Zbl 0862.22010
[20] J Hilgert, K H Neeb, W Plank, Symplectic convexity theorems and coadjoint orbits, Compositio Math. 94 (1994) 129 · Zbl 0819.22006
[21] Y Kamishima, T Tsuboi, CR-structures on Seifert manifolds, Invent. Math. 104 (1991) 149 · Zbl 0728.32012
[22] F Knop, Convexity of Hamiltonian manifolds, J. Lie Theory 12 (2002) 571 · Zbl 1038.53080
[23] E Lerman, Contact cuts, Israel J. Math. 124 (2001) 77 · Zbl 1023.57018
[24] E Lerman, A convexity theorem for torus actions on contact manifolds, Illinois J. Math. 46 (2002) 171 · Zbl 1021.53061
[25] E Lerman, Contact toric manifolds, J. Symplectic Geom. 1 (2003) 785 · Zbl 1079.53118
[26] E Lerman, E Meinrenken, S Tolman, C Woodward, Nonabelian convexity by symplectic cuts, Topology 37 (1998) 245 · Zbl 0913.58023
[27] E Lerman, C Willett, The topological structure of contact and symplectic quotients, Internat. Math. Res. Notices (2001) 33 · Zbl 0971.57032
[28] F Loose, Reduction in contact geometry, J. Lie Theory 11 (2001) 9 · Zbl 0978.53131
[29] S F B de Moraes, C Tomei, Moment maps on symplectic cones, Pacific J. Math. 181 (1997) 357 · Zbl 0902.58011
[30] S Nakajima, Über konvexe Kurven und Flächen, Tohoku Math. J. 29 (1928) 227 · JFM 54.0799.04
[31] H Nozawa, Five dimensional \(K\)-contact manifolds of rank 2
[32] E Prato, Convexity properties of the moment map for certain non-compact manifolds, Comm. Anal. Geom. 2 (1994) 267 · Zbl 0842.58034
[33] C V Robinson, Spherical theorems of Helly type and congruence indices of spherical caps, Amer. J. Math. 64 (1942) 260 · Zbl 0063.06523
[34] R Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998) 46 · Zbl 0915.58036
[35] H Tietze, Über Konvexheit im kleinen und im großen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen, Math. Z. 28 (1928) 697 · JFM 54.0797.01
[36] C Willett, Contact reduction, Trans. Amer. Math. Soc. 354 (2002) 4245 · Zbl 1018.53038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.