zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the metrizability of cone metric spaces. (English) Zbl 1206.54026
Summary: We show in this paper that a (complete) cone metric space $(X,E,P,d)$ is indeed (completely) metrizable for a suitable metric $D$. Moreover, given any finite number of contractions $f_{1},\dots ,f_n$ on the cone metric space $(X,E,P,d), D$ can be defined in such a way that these functions become also contractions on $(X,D)$.

54E35Metric spaces, metrizability
Full Text: DOI
[1] Amini-Harandi, A.; Fakhar, M.: Fixed point theory in cone metric spaces obtained via the scalarization method, Computers and mathematics with applications 59, No. 11, 3529-3534 (2010) · Zbl 1197.54055 · doi:10.1016/j.camwa.2010.03.046
[2] Z. Kadelburg, S. Radenovic, V. Rakocevic, A note on equivalence of some metric and cone metric fixed point results, Applied Mathematics Letters, doi:10.1016/j.aml.2010.10.030, in press.
[3] Huang, L. -G.; Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings, Journal of mathematical analysis and applications 332, 1468-1476 (2007) · Zbl 1118.54022 · doi:10.1016/j.jmaa.2005.03.087
[4] Raja, P.; Vaezpour, S. M.: Some extensions of Banach’s fixed point theorem in complete cone metric spaces, Journal of fixed point theory and applications, 1-11 (2008) · Zbl 1148.54339 · doi:10.1155/2008/768294
[5] Rezapour, Sh.; Hamlbarani, R.: Some notes on the paper ”cone metric spaces and fixed point theorems of contractive mappings”, Journal of mathematical analysis and applications 345, No. 2, 719-724 (2008) · Zbl 1145.54045 · doi:10.1016/j.jmaa.2008.04.049
[6] Du, W. S.: A note on cone metric fixed point theory and its equivalence, Nonlinear analysis TMA 72, 2259-2261 (2010) · Zbl 1205.54040 · doi:10.1016/j.na.2009.10.026