×

zbMATH — the first resource for mathematics

Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics. (English) Zbl 1206.58009
The authors study the Strichartz estimates for the Schrödinger equation posed on manifolds with hyperbolic trapped geodesics. There are two fundamental estimates which reflect the behavior of solutions of linear or nonlinear wave or Schrödinger equations: local smoothing effect and Strichartz type estimates.
For the description of the local smoothing effect in geometric settings, it is known that the “nontrapping condition” is essentially necessary and sufficient [see S.-i. Doi, Math. Ann. 318, No. 2, 355–389 (2000; Zbl 0969.35029) and N. Burq, Duke Math. J. 123, No. 2, 403–427 (2004; Zbl 1061.35024)].
In contrast, this is not clear for the Strichartz estimates. The Strichartz estimates are a family of space time integrability estimates of the form
\[ \|e^{it\Delta} u_0\|_{L^p_t((0,T); L^q(M))}\leq C_T \|u_0\|_{L^2(M)}. \]
Global-in-time Strichartz estimates (with \(T=\infty\)) are known for the flat Laplacian on \(\mathbb{R}^n\), while the local-in-time Strichartz estimates are known in several geometric situations where the manifold is non-trapping (asymptotically Euclidean, conic or hyperbolic). On the other hand, it is clear that such a global-in- time estimate cannot hold on compact manifolds or non-compact manifolds in the presence of elliptic (stable) non-degenerate periodic orbits of the geodesic flow. Moreover, there do exist examples of trapping manifolds where a certain Strichartz estimate is true (\(p=q=4\) and \(M=\mathbb{R}\times\mathbb{T}\) by H. Takaoka and N. Tzvetkov [J. Funct. Anal. 182, No. 2, 427–442 (2001; Zbl 0976.35085)]).
In this paper, the authors prove Strichartz estimates (without loss) for some examples of Riemannian manifolds where trapping does occur (and consequently loss is unavoidable for the smoothing effect), but the trapped set is hyperbolic and of sufficiently small fractal dimension.

MSC:
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35B65 Smoothness and regularity of solutions to PDEs
53C22 Geodesics in global differential geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anantharaman N.: Entropy and the localization of eigenfunctions. Annals of Math. 168(2), 435–475 (2008) · Zbl 1175.35036 · doi:10.4007/annals.2008.168.435
[2] Anantharaman N., Nonnenmacher S.: Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Ann. Inst. Fourier (Grenoble) 57(7), 1465–2523 (2007) · Zbl 1145.81033
[3] Anker J-P., Pierfelice V.: Nonlinear Schrödinger equation on real hyperbolic spaces. Ann. Henri Poincaré Analyse Non-Linéaire 26(5), 1853–1869 (2009) · Zbl 1176.35166 · doi:10.1016/j.anihpc.2009.01.009
[4] Babič V.M.: Eigenfunctions which are concentrated in the neighborhood of a closed geodesic (in Russian). Zap. Nau cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 9, 15–63 (1968)
[5] Banica V.: The nonlinear Schrödinger equation on the hyperbolic space. Comm. PDE 32(10), 1643–1677 (2007) · Zbl 1143.35091 · doi:10.1080/03605300600854332
[6] J.-M. Bouclet, Semi-classical functional calculus on manifolds with ends and weighted L p estimates, Arxiv:0711.358.
[7] Bouclet J.-M.: Littlewood–Paley decompositions on manifolds with ends. Bull. Soc. Math. Fr. 138(1), 1–37 (2010) · Zbl 1198.42013
[8] J.-M. Bouclet, Strichartz estimates for asymptotically hyperbolic manifolds, Analysis and PDE, in press.
[9] Bouclet J.-M., Tzvetkov N.: Strichartz estimates for long range perturbations. Amer. J. Math. 129:6, 1665–1609 (2007) · Zbl 1154.35077
[10] Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993) · Zbl 0787.35097 · doi:10.1007/BF01896020
[11] Burq N.: Smoothing effect for Schrödinger boundary value problems. Duke Math. J. 123(2), 403–427 (2004) · Zbl 1061.35024 · doi:10.1215/S0012-7094-04-12326-7
[12] Burq N., Gerard P., Tzvetkov N.: Strichartz inequalities and the non-linear Schrödinger equation on compact manifolds. Amer. J. Math 126, 569–605 (2004) · Zbl 1067.58027 · doi:10.1353/ajm.2004.0016
[13] Burq N., Gerard P., Tzvetkov N.: On Nonlinear Schrödinger equations in exterior domains. Ann. I.H.P. Ana. non lin. 21, 295–318 (2004) · Zbl 1061.35126 · doi:10.1016/S0294-1449(03)00040-4
[14] Burq N., Zworski M.: Geometric control in the presence of a black box. J. Amer. Math. Soc. 17(2), 443–471 (2004) · Zbl 1050.35058 · doi:10.1090/S0894-0347-04-00452-7
[15] Cardoso F., Vodev G.: Uniform estimates of the Laplace–Beltrami operator on infinite volume Riemannian manifolds II. Ann. H. Poincaré 3, 673–691 (2002) · Zbl 1021.58016 · doi:10.1007/s00023-002-8631-8
[16] Carles R.: Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete Contin. Dyn. Syst. 13(2), 385–398 (2005) · Zbl 1086.35101 · doi:10.3934/dcds.2005.13.385
[17] Christ M., Kiselev A.: Maximal functions associated to filtrations. J. Funct. Anal. 179, 409–425 (2001) · Zbl 0974.47025 · doi:10.1006/jfan.2000.3687
[18] Christianson H.: Cutoff resolvent estimates and the semilinear Schrödinger equation, Proc. Amer. Math. Soc. 136(10), 3513–3520 (2008) · Zbl 1156.35085 · doi:10.1090/S0002-9939-08-09290-3
[19] Constantin P., Saut J.-C.: Effets régularisants locaux pour des équations dispersives générales. C. R. AcadS ci. Paris Sér. I Math. 304(14), 407–410 (1987)
[20] K. Datchev, Local smoothing for scattering manifolds with hyperbolic trapped sets, Comm. Math. Phys. 286:3, 837–850. · Zbl 1189.58016
[21] Doi S.-I.: Smoothing effects for Schrödinger evolution equation and global behaviour of geodesic flow. Math. Ann. 318, 355–389 (2000) · Zbl 0969.35029 · doi:10.1007/s002080000128
[22] Gaspard P., Rice S.A.: Semiclassical quantization of the scattering from a classically chaotic repellor. J. Chem. Phys. 90, 2242–2254 (1989) · doi:10.1063/1.456018
[23] C. Guillarmou, S. Moroianu, J. Park, Eta invariant and Selberg Zeta function of odd type over convex co-compact hyperbolic manifolds., Advances in Math., to appear; Arxiv 0901.4082 · Zbl 1209.58017
[24] B. Hasselblatt, A. Katok, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1997. · Zbl 0878.58019
[25] Hassell A., Tao T., Wunsch J.: Sharp Strichartz estimates on nontrapping asymptotically conic manifolds. Amer. J. Math. 128(4), 963–1024 (2006) · Zbl 1177.58019 · doi:10.1353/ajm.2006.0033
[26] Hassell A., Vasy A.: Symbolic functional calculus and N-body resolvent estimates. J. Funct. Anal. 173(2), 257–283 (2000) · Zbl 0960.58025 · doi:10.1006/jfan.2000.3569
[27] Ionescu A., Staffilani G.: Semilinear Schrödinger flow on hyperbolic space: scattering in H 1. Math. Ann. 345(1), 133–158 (2009) · Zbl 1203.35262 · doi:10.1007/s00208-009-0344-6
[28] Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 15, 955–980 (1998) · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[29] Klingenberg W.: Riemannian Geometry, Studies in Mathematics, de Gruyter. New-York, Berlin (1982)
[30] Mazzeo R., Melrose R.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75, 260–310 (1987) · Zbl 0636.58034 · doi:10.1016/0022-1236(87)90097-8
[31] R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, in ”Spectral and Scattering Theory” (M. Ikawa, ed.), Marcel Dekker, 1994. · Zbl 0837.35107
[32] Nonnenmacher S., Zworski M.: Quantum decay rates in chaotic scattering. Acta Math. 203(2), 149–233 (2009) · Zbl 1226.35061 · doi:10.1007/s11511-009-0041-z
[33] G.P. Paternain, Geodesic Flows. Progress in Mathematics 180, Birkhäuser Boston Inc., Boston MA (1999).
[34] Patterson S.J.: The limit set of a Fuchsian group. Acta Math. 136, 241–273 (1976) · Zbl 0336.30005 · doi:10.1007/BF02392046
[35] Perry P.: Asymptotics of the length spectrum for hyperbolic manifolds of infinite volume. Geom. Funct. Anal. 11, 132–141 (2001) · Zbl 0986.11059 · doi:10.1007/PL00001668
[36] M.F. Py skina, The asymptotic behavior of eigenfunctions of the Helmholtz equation that are concentrated near a closed geodesic (in Russian), Zap. Nau cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 15 (1969), 154–160.
[37] Ralston J.V.: On the construction of quasimodes associated with stable periodic orbits. Comm. Math. Phys. 51-3, 219–242 (1976) · Zbl 0333.35066 · doi:10.1007/BF01617921
[38] J. Schmeling, R. Siegmund-Schultze, Hölder continuity of the holonomy maps for hyperbolic basic sets. I., Ergodic Theory and Related Topics, III (Güstrow, 1990), Springer Lecture Notes in Math. 1514 (1992), 174–191. · Zbl 0766.58043
[39] Staffilani G., Tataru D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm. Part. Diff. Eq. 27(7-8), 1337–1372 (2002) · Zbl 1010.35015 · doi:10.1081/PDE-120005841
[40] Strichartz R.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977) · Zbl 0372.35001 · doi:10.1215/S0012-7094-77-04430-1
[41] Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Publ. IHES 50, 172–202 (1979) · Zbl 0439.30034
[42] Takaoka H., Tzvetkov N.: On 2D nonlinear Schrödinger equation on \({\mathbb {R} \times \mathbb {T}}\) . J. Funct. Anal. 182(2), 427–442 (2001) · Zbl 0976.35085 · doi:10.1006/jfan.2000.3732
[43] Wunsch J., Zworski M.: Distribution of resonances for asymptotically Euclidean manifolds. J. Diff. Geom. 55, 43–82 (2000) · Zbl 1030.58024
[44] Zworski M.: Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces. Invent. Math. 136(2), 353–409 (1999) · Zbl 1016.58014 · doi:10.1007/s002220050313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.