Caravenna, Francesco; Pétrélis, Nicolas A polymer in a multi-interface medium. (English) Zbl 1206.60089 Ann. Appl. Probab. 19, No. 5, 1803-1839 (2009). The author considers a model for a polymer chain interacting with a sequence of equispaced flat interfaces through a pinning potential. The intensity of the pinning interaction is constant, while the interface spacing \(T\) is allowed to vary with the size \(N\) of the polymer. The main result is the explicit determination of the scaling behavior of the model in the large \(N\) limit, as a function of \(T\) and for fixed positive intensity. The approach is based on renewal theory. Reviewer: Anatoliy Pogorui (Zhytomyr) Cited in 1 ReviewCited in 1 Document MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60F05 Central limit and other weak theorems 82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics Keywords:Localization/delocalization transition; pinning model; polymer model; random walk; renewal theory PDF BibTeX XML Cite \textit{F. Caravenna} and \textit{N. Pétrélis}, Ann. Appl. Probab. 19, No. 5, 1803--1839 (2009; Zbl 1206.60089) Full Text: DOI arXiv OpenURL References: [1] Ben Arous, G. and Černý, J. (2006). Dynamics of trap models. In École d’Été de Physique des Houches LXXXIII “ Mathematical Statistical Physics ” 331-394. North-Holland, Amsterdam. · Zbl 1458.82019 [2] Caravenna, F. and Deuschel, J.-D. (2008). Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction. Ann. Probab. 36 2388-2433. · Zbl 1179.60066 [3] Caravenna, F. and Pétrélis, N. (2009). Depinning of a polymer in a multi- interface medium. Electron J. Probab . To appear. Available at arXiv.org:0901.2902v1. · Zbl 1192.60105 [4] Caravenna, F., Giacomin, G. and Zambotti, L. (2006). Sharp asymptotic behavior for wetting models in (1+1)-dimension. Electron. J. Probab. 11 345-362 (electronic). · Zbl 1112.60068 [5] Caravenna, F., Giacomin, G. and Zambotti, L. (2007). A renewal theory approach to periodic copolymers with adsorption. Ann. Appl. Probab. 17 1362-1398. · Zbl 1136.82391 [6] den Hollander, F. and Pétrélis, N. (2009). On the localized phase of a copolymer in an emulsion: Supercritical percolation regime. Comm. Math. Phys. 285 825-871. · Zbl 1187.60019 [7] den Hollander, F. and Whittington, S. G. (2006). Localization transition for a copolymer in an emulsion. Teor. Veroyatn. Primen. 51 193-240. · Zbl 1119.82048 [8] den Hollander, F. and Wüthrich, M. V. (2004). Diffusion of a heteropolymer in a multi-interface medium. J. Statist. Phys. 114 849-889. · Zbl 1061.82029 [9] Deuschel, J.-D., Giacomin, G. and Zambotti, L. (2005). Scaling limits of equilibrium wetting models in (1+1)-dimension. Probab. Theory Related Fields 132 471-500. · Zbl 1084.60060 [10] Feller, W. (1968). An Introduction to Probability Theory and Its Applications I , 3rd ed. Wiley, New York. · Zbl 0155.23101 [11] Fisher, M. E. (1984). Walks, walls, wetting, and melting. J. Statist. Phys. 34 667-729. · Zbl 0589.60098 [12] Giacomin, G. (2007). Random Polymer Models . Imperial College Press, London. · Zbl 1125.82001 [13] Isozaki, Y. and Yoshida, N. (2001). Weakly pinned random walk on the wall: Pathwise descriptions of the phase transition. Stochastic Process. Appl. 96 261-284. · Zbl 1058.60091 [14] Kalashnikov, V. V. (1978). Uniform estimation of the convergence rate in a renewal theorem for the case of discrete time. Theory Probab. Appl. 22 390-394. · Zbl 0378.60069 [15] Kesten, H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Statist. 22 425-487. · Zbl 0632.60106 [16] Metzler, R. and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 1-77. · Zbl 0984.82032 [17] Wüthrich, M. V. (2006). A heteropolymer in a medium with random droplets. Ann. Appl. Probab. 16 1653-1670. · Zbl 1113.60098 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.