On modified block SSOR iteration methods for linear systems from steady incompressible viscous flow problems. (English) Zbl 1206.65134

The paper is concerned with the presentation of the block symmetric successive overrelaxation (SSOR) and a modified block SSOR iteration methods, based on the special structures of the coefficient matrices arising in numerical solution of two-dimensional steady incompressible viscous flow problems in primitive variable formulation. The authors present a theoretical analysis which shows that, under certain conditions, these methods are convergent for the nonsymmetric systems arising from the discretization of the above mentioned problems.


65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
76D05 Navier-Stokes equations for incompressible viscous fluids
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI


[1] Bai, Z.-Z., A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations, Adv. comput. math., 10, 169-186, (1999) · Zbl 0922.65033
[2] Bai, Z.-Z., Modified block SSOR preconditioners for symmetric positive definite linear systems, Ann. oper. res., 103, 263-282, (2001) · Zbl 1028.65018
[3] Bai, Z.-Z., Parallel matrix multisplitting block relaxation iteration methods, Math. numer. sinica, 17, 238-252, (1995), In Chinese · Zbl 0860.65020
[4] Bai, Z.-Z.; Wang, D.-R., Generalized asynchronous matrix multisplitting forward and backward relaxation methods, Math. appl., 9, 121-126, (1996), In Chinese · Zbl 0939.65047
[5] Bai, Z.-Z., Asynchronous parallel matrix multisplitting block relaxation iteration methods, Numer. math., A J. Chinese univ. (Chinese ser.), 19, 28-39, (1997), In Chinese · Zbl 0883.65023
[6] Bai, Z.-Z.; Migallón, V.; Penadés, J.; Szyld, D.B., Block and asynchronous two-stage methods for mildly nonlinear systems, Numer. math., 82, 1-20, (1999) · Zbl 0941.65047
[7] Bai, Z.-Z.; Evans, D.J.; Calinescu, R.C., A class of asynchronous multisplitting two-stage iterations for large sparse block systems of weakly nonlinear equations, J. comput. appl. math., 110, 271-286, (1999) · Zbl 0970.65054
[8] Bai, Z.-Z.; Golub, G.H.; Lu, L.-Z.; Yin, J.-F., Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. sci. comput., 26, 844-863, (2005) · Zbl 1079.65028
[9] Beam, R.M.; Warming, R.F., An implicit finite-difference algorithm for hyperbolic systems in conservation-law form, J. comput. phys., 22, 87-110, (1976) · Zbl 0336.76021
[10] Chorin, A.J., A numerical method for solving incompressible viscous flow problems, J. comput. phys., 2, 12-26, (1967) · Zbl 0149.44802
[11] Demmel, J.W.; Higham, N.J.; Schreiber, R.S., Stability of block LU factorization, Numer. linear algebr., 2, 173-190, (1995) · Zbl 0834.65010
[12] Evans, D.J.; Bai, Z.-Z., Blockwise matrix multi-splitting multi-parameter block relaxation methods, Int. J. comput. math., 64, 103-118, (1997)
[13] Feingold, D.G.; Varga, R.S., Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem, Pac. J. math., 12, 1241-1250, (1962) · Zbl 0109.24802
[14] Gresho, P.M., Incompressible fluid dynamics: some fundamental formulation issues, Ann. rev. fluid mech., 23, 413-453, (1991) · Zbl 0717.76006
[15] MacCormack, R.W.; Candler, G.V., The solution of the navier – stokes equations using gauss – seidel line relaxation, Comput. fluids, 17, 135-150, (1989) · Zbl 0664.76031
[16] Orland, P., Fluid flow phenomena: A numeirical toolkit, (1999), Kluwer Academic Publishers.
[17] Pulliam, T.H.; Chaussee, D.S., A diagonal form of an implicit approximate-factorization algorithm, J. comput. phys., 39, 347-363, (1981) · Zbl 0472.76068
[18] Shah, A.; Guo, H.; Yuan, L., A third-order upwind compact scheme on curvilinear meshes for the incompressible navier – stokes equations, Commun. comput. phys., 5, 712-729, (2009) · Zbl 1364.76138
[19] Shah, A.; Yuan, L., Flux-difference splitting-based upwind compact schemes for the incompressible navier – stokes equations, Int. J. numer. meth. fluids, 61, 552-568, (2009) · Zbl 1172.76035
[20] Shah, A.; Yuan, L.; Khan, A., Upwind compact finite difference scheme for time-accurate solution of the incompressible navier – stokes equations, Appl. math. comput., 215, 3201-3213, (2010) · Zbl 1352.76084
[21] Yoon, S.; Jameson, A., Lower-upper symmetric-gauss – seidel method for the Euler and navier – stokes equations, Aiaa j., 26, 1025-1026, (1988)
[22] Zhang, C.-Y.; Li, Y.-T.; Chen, F., On Schur complement of block diagonally dominant matrices, Linear algebra appl., 414, 533-546, (2006) · Zbl 1092.15023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.