Yıldırım, Ahmet He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. (English) Zbl 1206.65239 Int. J. Comput. Math. 87, No. 13, 2998-3006 (2010); correction ibid. 98, No. 5, 1070 (2021). Summary: The homotopy perturbation method (HPM) is used to obtain analytic and approximate solutions of space- and time-fractional telegraph equations. The space- and time-fractional derivatives are considered in the Caputo sense. The analytic solutions are calculated in the form of a series with easily computable terms. Some examples are given. The results reveal that HPM is very effective and convenient. Cited in 1 ReviewCited in 39 Documents MSC: 65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs 35R11 Fractional partial differential equations 35L20 Initial-boundary value problems for second-order hyperbolic equations Keywords:homotopy perturbation method; fractional differential equation; telegraph equation; numerical examples PDF BibTeX XML Cite \textit{A. Yıldırım}, Int. J. Comput. Math. 87, No. 13, 2998--3006 (2010; Zbl 1206.65239) Full Text: DOI References: [1] Caputo M., J. Roy. Astron. Soc. 13 pp 529– (1967) [2] Das S., Int. J. Nonlinear Sci. Numer. Simulation 9 pp 361– (2008) · Zbl 06942361 [3] DOI: 10.1088/0031-8949/75/6/007 · Zbl 1117.35326 [4] DOI: 10.1615/JPorMedia.v11.i8.50 [5] DOI: 10.2528/PIER07090403 [6] Dehghan M., Commun. Numer. Methods Eng. 26 pp 705– (2010) [7] DOI: 10.1002/num.20306 · Zbl 1145.65078 [8] DOI: 10.1016/j.cam.2006.07.017 · Zbl 1120.65112 [9] Ganji Z. Z., Topol. Methods Nonlinear Anal. 31 pp 341– (2008) [10] DOI: 10.1016/S0045-7825(98)00108-X · Zbl 0942.76077 [11] DOI: 10.1016/S0045-7825(99)00018-3 · Zbl 0956.70017 [12] DOI: 10.1016/S0020-7462(98)00085-7 · Zbl 1068.74618 [13] DOI: 10.1016/S0096-3003(01)00312-5 · Zbl 1030.34013 [14] DOI: 10.1016/S0096-3003(03)00341-2 · Zbl 1039.65052 [15] DOI: 10.1016/j.chaos.2005.03.006 · Zbl 1072.35502 [16] DOI: 10.1515/IJNSNS.2005.6.2.207 · Zbl 1401.65085 [17] DOI: 10.1016/j.physleta.2005.10.005 · Zbl 1195.65207 [18] DOI: 10.1142/S0217979206033796 · Zbl 1102.34039 [19] DOI: 10.1142/S0217979206034819 [20] He J. H., Topol. Methods Nonlinear Anal. 31 pp 205– (2008) [21] DOI: 10.1142/S0217979208048668 · Zbl 1149.76607 [22] DOI: 10.1016/j.chaos.2006.03.020 · Zbl 1141.35448 [23] DOI: 10.1002/num.20308 · Zbl 1145.65115 [24] Y. Luchko and R. Gorneflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint seriesA08 - 98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998 [25] Miller K. S., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) · Zbl 0789.26002 [26] DOI: 10.1016/j.amc.2005.01.009 · Zbl 1103.65335 [27] DOI: 10.1016/j.physleta.2007.01.046 · Zbl 1203.65212 [28] Momani S., Topol. Methods Nonlinear Anal. 31 pp 211– (2008) [29] Odibat Z., Int. J. Nonlinear Sci. Numer. Simulation 7 pp 27– (2006) · Zbl 1401.65087 [30] Odibat Z., Topol. Methods Nonlinear Anal. 31 pp 227– (2008) [31] Oldham K. B., The Fractional Calculus (1974) · Zbl 0292.26011 [32] DOI: 10.1007/s00440-003-0309-8 · Zbl 1049.60062 [33] DOI: 10.1142/S0252959903000050 · Zbl 1033.60077 [34] DOI: 10.1080/00207160701405477 · Zbl 1131.65114 [35] DOI: 10.1016/j.chaos.2006.04.013 [36] Öziş T., Int. J. Nonlinear Sci. Numer. Simulation 8 pp 243– (2007) · Zbl 06942269 [37] Öziş T., Int. J. Nonlinear Sci. and Numer. Simulation 8 pp 239– (2007) · Zbl 06942268 [38] DOI: 10.1016/j.jsv.2006.10.001 · Zbl 1242.70044 [39] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008 [40] DOI: 10.1016/j.nonrwa.2008.02.032 · Zbl 1162.34307 [41] Samko S. G., Fractional Integrals and Derivatives: Theory and Applications (1993) · Zbl 0818.26003 [42] DOI: 10.1088/0031-8949/75/4/031 · Zbl 1110.35354 [43] DOI: 10.1016/j.mcm.2007.09.016 · Zbl 1145.34353 [44] DOI: 10.1007/s11071-006-9194-x · Zbl 1179.81064 [45] West B. J., Physics of Fractal Operators (2003) [46] DOI: 10.1016/j.camwa.2008.07.020 · Zbl 1165.65377 [47] Yıldırım A., Zeitschrift für NaturforschungA, A J. Phys. Sci. 63 pp 621– (2008) [48] A.Yıldırım,Application of the Homotopy perturbation method for the Fokker–Planck equation, preprint (2008). To appear in Commun. Numer. Methods Eng. DOI:10.1002/cnm.1200 [49] DOI: 10.1080/00207160802247646 · Zbl 1192.65102 [50] DOI: 10.1016/j.physleta.2007.04.072 · Zbl 1209.65120 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.