Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation. (English) Zbl 1206.65242

Summary: The elliptic Monge-Ampère equation is a fully nonlinear partial differential equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail.
In this article, we build a finite difference solver for the Monge-Ampère equation, which converges even for singular solutions. Regularity results are used to select a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton’s method.
Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities.


65N06 Finite difference methods for boundary value problems involving PDEs
35J93 Quasilinear elliptic equations with mean curvature operator
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI arXiv


[1] Evans, L.C., Partial differential equations and monge – kantorovich mass transfer, Current developments in mathematics, (1997), Int. Press Boston, MA, Cambridge, MA
[2] Bakelman, I., Convex analysis and nonlinear geometric elliptic equations, (1994), Springer-Verlag · Zbl 0815.35001
[3] A.V. Pogorelov, Monge-Ampère equations of elliptic type, Translated from the first Russian edition by F. Leo Boron with the assistance of Albert L. Rabenstein, C. Richard, and P. Bollinger, Noordhoff Ltd., Groningen, 1964. · Zbl 0133.04902
[4] Oliker, V.I.; Prussner, L.D., On the numerical solution of the equation (2z/∂ x2)(∂2z/∂y2)−(∂2z/∂x∂y)2=f and its discretizations I, Numer. math., 54, 271-293, (1988) · Zbl 0659.65116
[5] Haltiner, G.J., Numerical weather prediction, (1971), Wiley New York
[6] Kasahara, A., Significance of non-elliptic regions in balanced flows of the tropical atmosphere, Mon. weather rev., 110, (1982)
[7] Stoker, J.J., Nonlinear elasticity, (1968), Gordon and Breach Science Publishers New York · Zbl 0187.45801
[8] Westcott, B.S., Shaped reflector antenna design, (1983), Research Studies Press New York
[9] Stojanovic, S.D., Risk premium and fair option prices under stochastic volatility: the hara solution, C. R. math., 340, 551-556, (2005) · Zbl 1118.91053
[10] Ambrosio, L., Lecture notes on optimal transport problems, (), 1-52, vol. 1812 · Zbl 1047.35001
[11] Villani, C., Topics in optimal transportation, () · Zbl 1106.90001
[12] Haker, S.; Tannenbaum, A.; Kikinis, R., Mass preserving mappings and image registration, MICCAI ’01: Proceedings of the 4th international conference on medical image computing and computer-assisted intervention, (2001), Springer-Verlag London, UK
[13] Haker, S.; Zhu, L.; Tannenbaum, A.; Angenent, S., Optimal mass transport for registration and warping, Int. J. comput. vision, 60, 225-240, (2004)
[14] ur Rehman, T.; Haber, E.; Pryor, G.; Melonakos, J.; Tannenbaum, A., 3D nonrigid registration via optimal mass transport on the GPU, Med. image. anal., 13, 931-940, (2009)
[15] Delzanno, G.L.; Chacón, L.; Finn, J.M.; Chung, Y.; Lapenta, G., An optimal robust equidistribution method for two-dimensional grid adaptation based on monge – kantorovich optimization, J. comput. phys., 227, 9841-9864, (2008) · Zbl 1155.65394
[16] J.M. Finn, G.L. Delzanno, L. Chacón, Grid generation and adaptation by Monge-Kantorovich optimization in two and three-dimensions, in: Proceedings of the 17th International Meshing Roundtable, pp. 551-568.
[17] Budd, C.J.; Williams, J.F., Moving mesh generation using the parabolic monge – ampère equation, SIAM J. sci. comput., 31, 3438-3465, (2009) · Zbl 1200.65099
[18] Glimm, T.; Oliker, V., Optical design of single reflector systems and the monge – kantorovich mass transfer problem, J. math. sci. (N.Y.), 117, 4096-4108, (2003), Nonlinear problems and function theory
[19] Frisch, U.; Matarrese, S.; Mohayaee, R.; Sobolevski, A., A reconstruction of the initial conditions of the universe by optimal mass transportation, Nature, 417, (2002)
[20] E. Haber, R. Horesh, J. Modersitski, Numerical optimization for constrained image registration, 2010, preprint. · Zbl 1240.94012
[21] Cohen-Or, D., Space deformations, surface deformations and the opportunities in-between, J. comput. sci. technol., 24, 2-5, (2009)
[22] Benamou, J.-D.; Brenier, Y., A computational fluid mechanics solution to the monge – kantorovich mass transfer problem, Numer. math., 84, 375-393, (2000) · Zbl 0968.76069
[23] Dean, E.J.; Glowinski, R., On the numerical solution of the elliptic monge – ampère equation in dimension two: a least-squares approach, (), 43-63 · Zbl 1152.65479
[24] Dean, E.J.; Glowinski, R., An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic monge – ampère equation in two-dimensions, Electron. trans. numer. anal., 22, 71-96, (2006), electronic · Zbl 1112.65119
[25] R. Glowinski, Numerical methods for fully nonlinear elliptic equations, in: R. Jeltsch, G. Wanner (Eds.), 6th International Congress on Industrial and Applied Mathermatics, ICIAM 07, Invited Lectures, pp. 155-192. · Zbl 1179.65146
[26] Feng, X.; Neilan, M., Mixed finite element methods for the fully nonlinear monge – ampère equation based on the vanishing moment method, SIAM J. numer. anal., 47, 1226-1250, (2009) · Zbl 1195.65170
[27] Feng, X.; Neilan, M., Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations, J. sci. comput., 38, 74-98, (2009) · Zbl 1203.65252
[28] Loeper, G.; Rapetti, F., Numerical solution of the monge – ampére equation by a newton’s algorithm, C.R. math. acad. sci. Paris, 340, 319-324, (2005) · Zbl 1067.65119
[29] Benamou, J.-D.; Froese, B.D.; Oberman, A.M., Two numerical methods for the elliptic monge – ampère equation, ESAIM: math. model. numer. anal., 44, (2010) · Zbl 1192.65138
[30] Zheligovsky, V.; Podvigina, O.; Frisch, U., The monge – ampère equation: various forms and numerical solution, J. comput. phys., 229, 5043-5061, (2010) · Zbl 1194.65141
[31] Oberman, A.M., Wide stencil finite difference schemes for the elliptic monge – ampère equation and functions of the eigenvalues of the Hessian, Discrete cont. dyn. syst. ser. B, 10, 221-238, (2008) · Zbl 1145.65085
[32] Froese, B.D.; Oberman, A.M., Convergent finite difference solvers for viscosity solutions of the monge – ampère equation in dimensions two and higher, (2010), <http://arxiv.org/abs/1007.0765>
[33] Caffarelli, L.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations. I. monge – ampère equation, Commun. pure appl. math., 37, 369-402, (1984) · Zbl 0598.35047
[34] Urbas, J.I.E., The generalized Dirichlet problem for equations of monge – ampère type, Ann. inst. H. Poincaré anal. non linéaire, 3, 209-228, (1986) · Zbl 0602.35038
[35] Caffarelli, L.A., Interior W2,p estimates for solutions of the monge – ampère equation, Ann. math., 131, 2, 135-150, (1990) · Zbl 0704.35044
[36] Gutiérrez, C.E., The monge – ampère equation, Progress in nonlinear differential equations and their applications, vol. 44, (2001), Birkhäuser Boston Inc. Boston, MA · Zbl 0989.35052
[37] A.V. Pogorelov, The Minkowski multidimensional problem, in: V.H. Winston & Sons, Washington, D.C., Translated from the Russian by Vladimir Oliker, Introduction by Louis Nirenberg, Scripta Series in Mathematics, 1978.
[38] Oberman, A.M., Computing the convex envelope using a nonlinear partial differential equation, Math. models methods appl. sci., 18, 759-780, (2008) · Zbl 1154.35056
[39] A.M. Oberman, L. Silvestre, The Dirichlet problem for the convex envelope, Trans. Amer. Math. Soc., in press (<http://arxiv.org/abs/1007.0773>). · Zbl 1244.35056
[40] Pogorelov, A.V., The Dirichlet problem for the multidimensional analogue of the monge – ampère equation, Dokl. akad. nauk SSSR, 201, 790-793, (1971) · Zbl 0238.35071
[41] Crandall, M.G.; Ishii, H.; Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. amer. math. soc. (N.S.), 27, 1-67, (1992) · Zbl 0755.35015
[42] Strang, G., Linear algebra and its applications, (1980), Academic Press [Harcourt Brace Jovanovich Publishers] New York · Zbl 0463.15001
[43] Oberman, A.M., Convergent difference schemes for degenerate elliptic and parabolic equations: hamilton – jacobi equations and free boundary problems, SIAM J. numer. anal., 44, 879-895, (2006), electronic · Zbl 1124.65103
[44] D.P. Bertsekas, Convex analysis and optimization, Athena Scientific, Belmont, MA, 2003. With Angelia Nedić and Asuman E. Ozdaglar. · Zbl 1140.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.