×

zbMATH — the first resource for mathematics

Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. (English) Zbl 1206.68299
Summary: In this second part of our state-of-the-art overview of aggregation theory, based again on our recent monograph on aggregation functions, we focus on several construction methods for aggregation functions and on special classes of aggregation functions, covering the well-known conjunctive, disjunctive, and mixed aggregation functions. Some fields of applications are included.

MSC:
68T37 Reasoning under uncertainty in the context of artificial intelligence
28E10 Fuzzy measure theory
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
PDF BibTeX XML Cite
Full Text: DOI HAL
References:
[1] Aczél, J., Lectures on functional equations and their applications, Mathematics in science and engineering, vol. 19, (1966), Academic Press New York, (Translated by Scripta Technica, Inc., supplemented by the author, edited by Hansjorg Oser) · Zbl 0139.09301
[2] Aczél, J.; Alsina, C., Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgments, Methods oper. res., 48, 3-22, (1984) · Zbl 0527.39002
[3] Alsina, C.; Frank, M.J.; Schweizer, B., Associative functions, triangular norms and copulas, (2006), World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ · Zbl 1100.39023
[4] Alsina, C.; Nelsen, R.B.; Schweizer, B., On the characterization of a class of binary operations on distribution functions, Stat. probabil. lett., 17, 2, 85-89, (1993) · Zbl 0798.60023
[5] Bajraktarević, M., Sur une équation fonctionnelle aux valeurs moyennes, Glasnik mat.-fiz. astronom. društvo mat. fiz. hrvatske. ser. II, 13, 243-248, (1958) · Zbl 0084.34401
[6] Birkhoff, G., Lattice theory, American mathematical society colloquium publications, vol. XXV, (1967), American Mathematical Society Providence, RI · Zbl 0126.03801
[7] Bustince, H.; Calvo, T.; De Baets, B.; Fodor, J.; Mesiar, R.; Montero, J.; Paternain, D.; Pradera, A., A class of aggregation functions encompassing two-dimensional OWA operators, Inform. sci., 180, 10, 1977-1989, (2010) · Zbl 1205.68419
[8] Butnariu, D.; Klement, E.P., Triangular norm-based measures and games with fuzzy coalitions, (1993), Kluwer Academic Publishers · Zbl 0804.90145
[9] Büyüközkan, G.; Ruan, D., Choquet integral based aggregation approach to software development risk assessment, Inform. sci., 180, 3, 441-451, (2010)
[10] Calvo, T.; Beliakov, G., Aggregation functions based on penalties, Fuzzy sets syst., 161, 10, 1420-1436, (2010) · Zbl 1207.68384
[11] Calvo, T.; De Baets, B.; Fodor, J., The functional equations of Frank and alsina for uninorms and nullnorms, Fuzzy sets syst., 120, 3, 385-394, (2001) · Zbl 0977.03026
[12] Calvo, T.; Kolesárová, A.; Komorníková, M.; Mesiar, R., Aggregation operators: properties classes and construction methods, (), 3-104 · Zbl 1039.03015
[13] Calvo, T.; Mesiar, R.; Yager, R.R., Quantitative weights and aggregation, IEEE trans. fuzzy syst., 12, 1, 62-69, (2004)
[14] Calvo, T.; Pradera, A., Double aggregation operators, Fuzzy sets syst., 142, 1, 15-33, (2004) · Zbl 1081.68105
[15] Capéraà, P.; Fougères, A.-L.; Genest, C., Bivariate distributions with given extreme value attractor, J. multivariate anal., 72, 1, 30-49, (2000) · Zbl 0978.62043
[16] Cuculescu, I.; Theodorescu, R., Extreme value attractors for star unimodal copulas, C.R. math. acad. sci. Paris, 334, 8, 689-692, (2002) · Zbl 0996.60026
[17] De Baets, B.; Fodor, J., Van melle’s combining function in MYCIN is a representable uninorm: an alternative proof, Fuzzy sets syst., 104, 1, 133-136, (1999) · Zbl 0928.03060
[18] Dombi, J., Basic concepts for a theory of evaluation: the aggregative operator, Eur. J. oper. res., 10, 282-293, (1982) · Zbl 0488.90003
[19] Durante, F.; Sempi, C., Semicopulæ, Kybernetika (Prague), 41, 3, 315-328, (2005) · Zbl 1249.26021
[20] Fodor, J.C., Contrapositive symmetry of fuzzy implications, Fuzzy sets syst., 69, 2, 141-156, (1995) · Zbl 0845.03007
[21] Fodor, J.C., An extension of fung – fu’s theorem, Int. J. uncertain. fuzz. knowl. syst., 4, 3, 235-243, (1996) · Zbl 1232.91130
[22] Fodor, J.C.; Yager, R.R.; Rybalov, A., Structure of uninorms, Int. J. uncertain. fuzz. knowl. syst., 5, 4, 411-427, (1997) · Zbl 1232.03015
[23] Frank, M.J., On the simultaneous associativity of F(x,y) and x+y−F(x,y), Aequationes math., 19, 2-3, 194-226, (1979) · Zbl 0444.39003
[24] Fu, J.; Caulfield, H.J.; Yoo, S.-M.; Wu, D., Fuzzy aggregation with artificial color filters, Inform. sci., 180, 1, 167-180, (2010)
[25] Fung, L.W.; Fu, K.S., An axiomatic approach to rational decision making in a fuzzy environment, (), 227-256 · Zbl 0366.90003
[26] Galambos, J., The asymptotic theory of extreme order statistics, (1987), Robert E. Krieger Publishing Co. Inc. Melbourne, FL · Zbl 0634.62044
[27] Genest, C.; Quesada Molina, J.J.; Rodríguez Lallena, J.A.; Sempi, C., A characterization of quasi-copulas, J. multivariate anal., 69, 2, 193-205, (1999) · Zbl 0935.62059
[28] Grabisch, M.; Marichal, J.-L.; Mesiar, R.; Pap, E., Aggregation functions, Encyclopedia of mathematics and its applications, vol. 127, (2009), Cambridge University Press
[29] Grabisch, M.; Marichal, J.-L.; Mesiar, R.; Pap, E., Aggregation functions: means, Inform. sci., 181, 1, 1-22, (2011) · Zbl 1206.68298
[30] Hájek, P., Metamathematics of fuzzy logic, (1998), Kluwer Academic Publishers Dordrecht · Zbl 0937.03030
[31] Hamacher, H., Über logische aggregationen nicht-binär explizierter entscheidungskriterien, (1978), Rita G. Fischer Verlag
[32] Jenei, S., Structure of left-continuous triangular norms with strong induced negations. II. rotation – annihilation construction, J. appl. non-classical logics, 11, 3-4, 351-366, (2001) · Zbl 1037.03508
[33] Joe, H., Multivariate models and dependence concepts, Monographs on statistics and applied probability, vol. 73, (1997), Chapman & Hall London · Zbl 0990.62517
[34] Klement, E.P.; Mesiar, R.; Pap, E., On the relationship of associative compensatory operators to triangular norms and conorms, Int. J. uncertain. fuzz. knowl. syst., 4, 129-144, (1996) · Zbl 1232.03041
[35] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, Trends in logic—studia logica library, vol. 8, (2000), Kluwer Academic Publishers. Dordrecht · Zbl 0972.03002
[36] Klement, E.P.; Mesiar, R.; Pap, E., Uniform approximation of associative copulas by strict and non-strict copulas, Illinois J. math., 45, 4, 1393-1400, (2001) · Zbl 1054.62064
[37] Klement, E.P.; Mesiar, R.; Pap, E., Archimax copulas and invariance under transformations, C.R. math. acad. sci. Paris, 340, 10, 755-758, (2005) · Zbl 1126.62040
[38] Klement, E.P.; Mesiar, R.; Pap, E., Transformations of copulas, Kybernetika (Prague), 41, 4, 425-434, (2005) · Zbl 1243.62019
[39] Kolesárová, A.; Komorníková, M., Triangular norm-based iterative compensatory operators, Fuzzy sets syst., 104, 1, 109-120, (1999) · Zbl 0931.68123
[40] Luhandjula, M.K., Compensatory operators in fuzzy linear programming with multiple objectives, Fuzzy sets syst., 8, 3, 245-252, (1982) · Zbl 0492.90076
[41] Luo, X.; Jennings, N.R., A spectrum of compromise aggregation operators for multi-attribute decision making, Artif. intell., 171, 2-3, 161-184, (2007) · Zbl 1168.68580
[42] Marques Pereira, R.A.; Ribeiro, R.A., Aggregation with generalized mixture operators using weighting functions, Fuzzy sets syst., 137, 1, 43-58, (2003), Preference modelling and applications (Granada, 2001) · Zbl 1041.91024
[43] Mayor, G.; Valero, O., Aggregation of asymmetric distances in computer science, Inform. sci., 180, 6, 803-812, (2010) · Zbl 1189.68129
[44] McNeil, A.J.; Nešlehová, J., Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric distributions, Ann. stat., 37, 3059-3097, (2009) · Zbl 1173.62044
[45] Merigó, J.M.; Gil-Lafuente, A.M., New decision-making techniques and their application in the selection of financial products, Inform. sci., 180, 11, 2085-2094, (2010) · Zbl 1194.91070
[46] R. Mesiar, Generated conjunctors and related operators in mv-logic as a basis for ai applications, in: ECAI’98, Workshop, Brighton, vol. 17, 1998, pp. 1-5.
[47] Mesiar, R.; Bustince, H.; Fernández, J., On the alpha-migrativity of semicopulas, quasi-copulas, and copulas, Inform. sci., 180, 10, 1967-1976, (2010) · Zbl 1191.62096
[48] Mesiar, R.; Špirková, J., Weighted means and weighting functions, Kybernetika (Prague), 42, 2, 151-160, (2006) · Zbl 1249.91022
[49] Mesiar, R.; Špirková, J., Weighted means and weighting functions, Kybernetika (Prague), 42, 2, 151-160, (2006) · Zbl 1249.91022
[50] Mesiar, R.; Špirková, J.; Vavríková, L., Weighted aggregation operators based on minimization, Inform. sci., 178, 4, 1133-1140, (2008) · Zbl 1135.68572
[51] Mesiarová, A., Continuous triangular subnorms, Fuzzy sets syst., 142, 1, 75-83, (2004), Aggregation techniques · Zbl 1043.03018
[52] Mesiarová, A., Generators of triangular norms, (), 95-111 · Zbl 1078.03023
[53] Mostert, P.S.; Shield, A.L., On the structure of semigroups on a compact manifold with boundary, Ann. math., 65, 117-143, (1957) · Zbl 0096.01203
[54] Moynihan, R., Infinite τT products of distribution functions, J. aust. math. soc. ser. A, 26, 2, 227-240, (1978) · Zbl 0385.60036
[55] Nelsen, R.B., An introduction to copulas, Lecture notes in statistics, vol. 139, (1999), Springer-Verlag New York · Zbl 0909.62052
[56] Ouyang, Y., On the construction of boundary weak triangular norms through additive generators, Nonlinear anal., 66, 125-130, (2007) · Zbl 1111.03048
[57] Pap, E., Null-additive set functions, Mathematics and its applications, vol. 337, (1995), Kluwer Academic Publishers Group Dordrecht · Zbl 0856.28001
[58] ()
[59] Papavlasopoulos, S.; Poulos, M.; Korfiatis, N.; Bokos, G., A non-linear index to evaluate a journal’s scientific impact, Inform. sci., 180, 11, 2156-2175, (2010)
[60] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J. math., 10, 313-334, (1960) · Zbl 0091.29801
[61] Schweizer, B.; Sklar, A., Associative functions and abstract semigroups, Publ. math. debrecen, 10, 69-81, (1963) · Zbl 0119.14001
[62] Schweizer, B.; Sklar, A., Probabilistic metric spaces, North-holland series in probability and applied mathematics, (1983), North-Holland Publishing Co. New York · Zbl 0546.60010
[63] Sklar, M., Fonctions de répartition à n dimensions et leurs marges, Publ. inst. stat. univ. Paris, 8, 229-231, (1959) · Zbl 0100.14202
[64] Suárez García, F.; Gil Álvarez, P., Two families of fuzzy integrals, Fuzzy sets syst., 18, 1, 67-81, (1986) · Zbl 0595.28011
[65] Sugeno, M.; Murofushi, T., Pseudo-additive measures and integrals, J. math. anal. appl., 122, 1, 197-222, (1987) · Zbl 0611.28010
[66] Tawn, J.A., Bivariate extreme value theory: models and estimation, Biometrika, 75, 3, 397-415, (1988) · Zbl 0653.62045
[67] Torra, V.; Narukawa, Y., Modeling decisions: information fusion and aggregation operators, cognitive technologies, (2007), Springer
[68] Urbański, M.; Wa¸sowski, J., Fuzzy arithmetic based on boundary weak T-norms, Int. J. uncertain. fuzz. knowl. syst., 13, 1, 27-37, (2005) · Zbl 1069.03052
[69] Xu, Z., Choquet integrals of weighted intuitionistic fuzzy information, Inform. sci., 180, 5, 726-736, (2010) · Zbl 1186.68469
[70] Xu, Z.; Da, Q.L., An overview of operators for aggregating information, Int. J. intell. syst., 18, 953-969, (2003) · Zbl 1069.68612
[71] Yager, R.R., Aggregation operators and fuzzy systems modeling, Fuzzy sets syst., 67, 2, 129-145, (1994) · Zbl 0845.93047
[72] R.R. Yager, Criteria importances in OWA aggregation: an application of fuzzy modeling, in: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems (FUZZ’IEEE’97), Barcelona, vol. 3, July 1997, pp. 1677-1682.
[73] Yager, R.R., Fusion of ordinal information using weighted Median aggregation, Int. J. approx. reason., 18, 1-2, 35-52, (1998) · Zbl 0942.68043
[74] Yager, R.R.; Filev, D., Essentials of fuzzy modelling and control, (1994), John Wiley & Sons New York
[75] Yager, R.R.; Rybalov, A., Uninorm aggregation operators, Fuzzy sets syst., 80, 111-120, (1996) · Zbl 0871.04007
[76] Yager, R.R.; Rybalov, A., Understanding the Median as a fusion operator, Int. J. gen. syst., 26, 3, 239-263, (1997) · Zbl 0980.68502
[77] Zimmermann, H.; Zysno, P., Latent connectives in human decision making, Fuzzy sets syst., 4, 37-51, (1980) · Zbl 0435.90009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.