×

A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. (English) Zbl 1206.74019

Summary: We investigate a geometrically exact generalized continua of micromorphic type in the sense of Eringen for the phenomenological description of metallic foams. The two-field problem for the macrodeformation \(\varphi\) and the “affine microdeformation” \(\overline{P} \in {\text{GL}}^{+}(3)\) in the quasistatic, conservative elastic case is investigated in a variational form. The elastic stress-strain relation is taken for simplicity as physically linear. Depending on material constants different mathematical existence theorems in Sobolev-spaces are recalled for the resulting nonlinear boundary value problems. These results include existence results obtained by the first author for the micro-incompressible case \(\overline{P} \in {\text{SL}}(3)\) and the micropolar case \(\overline{P} \in {\text{SO}}(3)\). In order to mathematically treat external loads for large deformations a new condition, called bounded external work, has to be included, overcoming the conditional coercivity of the formulation. The observed possible lack of coercivity is related to fracture of the substructure of the metallic foam. We identify the relevant effective material parameters by comparison with the linear micromorphic model and its classical response for large scale samples. We corroborate the performance of the micromorphic model by presenting numerical calculations based on a linearized version of the finite-strain model and comparing the predictions to experimental results showing a marked size effect.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74G65 Energy minimization in equilibrium problems in solid mechanics
74B20 Nonlinear elasticity
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys., Solid State 2, 1272–1281 (1961)
[2] Antman, S.: Nonlinear problems of elasticity. In: Applied Mathematical Sciences, vol. 107. Springer, Berlin Heidelberg New York (1995) · Zbl 0820.73002
[3] Badiche, X., Forest, S., Guibert, T., Bienvenu, Y., Bartout, J.-D., Ienny, P., Croset, M., Bernet, H.: Mechanical properties and non-homogeneous deformation of open-cell nickel foams : application of the mechanics of cellular solids and of porous materials. Mat. Sci. Eng. A289, 276–288 (2000)
[4] Bertram, A., Svendsen, B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53, 653–675 (2001) · Zbl 1050.74004
[5] Blazy, J.-S., Marie-Louise, A., Forest, S., Chastel, Y., Pineau, A., Awade, A., Grolleron, C., Moussy, F.: Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading: statistical analysis and size effect. Int. J. Mech. Sci. 46, 217–244 (2004) · doi:10.1016/j.ijmecsci.2004.03.005
[6] Capriz, G.: Continua with Microstructure. Springer, Berlin Heidelberg New York (1989) · Zbl 0676.73001
[7] Capriz, G., Podio-Guidugli, P.: Formal structure and classification of theories of oriented media. Ann. Mat. Pura Appl. Ser. IV 115, 17–39 (1977) · Zbl 0374.73005 · doi:10.1007/BF02414710
[8] Capriz, G., Podio-Guidugli, P.: Structured continua from a Lagrangian point of view. Ann. Mat. Pura Appl. Ser. IV 135, 1–25 (1983) · Zbl 0555.73003 · doi:10.1007/BF01781060
[9] Chen, C., Fleck, N.A.: Size effects in the constrained deformation of metallic foams. J. Mech. Phys. Solids 50, 955–977 (2002) · Zbl 1071.74550 · doi:10.1016/S0022-5096(01)00128-4
[10] Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory, I. Instantaneous and averaged mechanical variables. Physica, A 322, 359–376 (2003) · Zbl 1076.74502 · doi:10.1016/S0378-4371(02)01921-0
[11] Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory, II. Balance laws. Physica, A 322, 376–392 (2003) · Zbl 1077.74509
[12] Cheng, Z.-Q., He, L.-H.: Micropolar elastic fields due to a circular cylindrical inclusion. Int. J. Eng. Sci. 35, 659–668 (1997) · Zbl 0913.73004 · doi:10.1016/S0020-7225(96)00104-8
[13] Cheng, Z.-Q., He, L.-H.: Micropolar elastic fields due to a spherical inclusion. Int. J. Eng. Sci. 33, 389–397 (1995) · Zbl 0899.73016 · doi:10.1016/0020-7225(94)00065-R
[14] Ciarlet, P.G.: Three-dimensional elasticity. In: Studies in Mathematics and Its Applications, vol. 1. Elsevier, Amsterdam (1988)(first edition) · Zbl 0648.73014
[15] De Cicco, S.: Stress concentration effects in microstretch elastic bodies. Int. J. Eng. Sci. 41, 187–199 (2003) · Zbl 1211.74111 · doi:10.1016/S0020-7225(02)00154-4
[16] Cosserat, E., Cosserat, F.: Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils (Theory of deformable bodies, NASA TT F-11 561, 1968), Paris (1909) · JFM 40.0862.02
[17] Dietsche, A., Steinmann, P., Willam, K.: Micropolar elastoplasticity and its role in localization. Int. J. Plast. 9, 813–831 (1993) · Zbl 0794.73004 · doi:10.1016/0749-6419(93)90053-S
[18] Dillard, T., Forest, S., Ienny, P.: Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A, Solids 25, 526–549 (2006) · Zbl 1094.74047 · doi:10.1016/j.euromechsol.2005.11.006
[19] Duvaut, G.: Elasticité linéaire avec couples de contraintes. Théorémes d’existence. J. Mec. Paris 9, 325–333 (1970) · Zbl 0233.73028
[20] Ehlers, W., Diebels, S., Volk, W.: Deformation and compatibilty for elasto-plastic micropolar materials with applications to geomechanical problems. In: Bertram, A., Sidoroff, F. (eds.) Mechanics of Materials with Intrinsic Length Scale: Physics, Experiments, Modelling and Applications. Journal Physique IV France 8, pp. 127–134. EDP Sciences, France (1998)
[21] Eringen, A.C.: Microcontinuum Field Theories. Springer, Berlin Heidelberg New York (1999) · Zbl 0953.74002
[22] Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed) Fracture. An advanced treatise, vol. II, pp. 621–729. Academic, New York (1968) · Zbl 0266.73004
[23] Eringen, A.C., Kafadar, C.B.: Polar field theories. In: Eringen, A.C. (ed) Continuum Physics, vol. IV: Polar and Nonlocal Field Theories, pp. 1–73. Academic, New York(1976)
[24] Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids. Int. J. Eng. Sci. 2, 189–203 (1964) · Zbl 0138.21202 · doi:10.1016/0020-7225(64)90004-7
[25] Fleck, N.A., Olurin, O.B., Chen, C., Ashby, M.F.: The effect of hole size upon the strength of metallic and polymeric foams. J. Mech. Phys. Solids 49, 2015–2030 (2001) · Zbl 1093.74500 · doi:10.1016/S0022-5096(01)00033-3
[26] Forest, S.: Homogenization methods and the mechanics of generalized continua – Part 2. Theor. Appl. Mech. 28(29), 113–143 (2002) · Zbl 1150.74401 · doi:10.2298/TAM0229113F
[27] Forest, S., Barbe, F., Cailletaud, G.: Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37, 7105–7126 (2000) · Zbl 0998.74019 · doi:10.1016/S0020-7683(99)00330-3
[28] Forest, S., Cailletaud, G., Sievert, R.: A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49(4), 705–736 (1997) · Zbl 0893.73023
[29] Forest, S., Dendievel, R., Canova, G.R.: Estimating the overall properties of heterogeneous Cosserat materials. Mod. Simul. Mater. Sci. Eng. 7, 829–840 (1999) · doi:10.1088/0965-0393/7/5/314
[30] Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003) · Zbl 1064.74009 · doi:10.1007/s00707-002-0975-0
[31] Gauthier, R.D.: Experimental investigations on micropolar media. In: Brulin, O., Hsieh, R.K.T. (eds) Mechanics of Micropolar Media, pp. 395–463. CISM Lectures, World Scientific, Singapore (1982)
[32] Germain, P.: The method of virtual power in continuum mechanics. Part 2 : microstructure. SIAM J. Appl. Math. 25, 556–575 (1973) · Zbl 0273.73061 · doi:10.1137/0125053
[33] Gheorghita, V.: On the existence and uniqueness of solutions in linear theory of Cosserat elasticity. I. Arch. Mech. 26, 933–938 (1974) · Zbl 0297.73009
[34] Gheorghita, V.: On the existence and uniqueness of solutions in linear theory of Cosserat elasticity. II. Arch. Mech. 29, 355–358 (1974) · Zbl 0356.73016
[35] Gibson, L.J., Ashby, M.F.:Cellular Solids. Cambridge University Press, Cambridge (1998) · Zbl 0723.73004
[36] Günther, W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweigische Wiss. Gesell. 10, 195–213 (1958) · Zbl 0102.17302
[37] Grammenoudis, P.: Mikropolare Plastizität. Ph.D-Thesis, Department of Mechanics. TU Darmstadt, http://elib.tu-darmstadt.de/diss/000312 (2003)
[38] Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964) · Zbl 0133.17604 · doi:10.1007/BF00253051
[39] Grenestedt, J.L.: Effective elastic behavior of some models for ”perfect” cellular solids. Int. J. Solids Struct. 36, 1471–1501 (1999) · Zbl 0948.74047 · doi:10.1016/S0020-7683(98)00048-1
[40] Gurtin, M.E., Podio-Guidugli, P.: On the formulation of mechanical balance laws for structured continua. Z. Angew. Math. Phys. 43, 181–190 (1992) · Zbl 0782.73067 · doi:10.1007/BF00944745
[41] Hlavacek, I., Hlavacek, M.: On the existence and uniqueness of solutions and some variational principles in linear theories of elasticity with couple-stresses. I: Cosserat continuum. II: Mindlin’s elasticity with micro-structure and the first strain gradient. J. Appl. Math. 14, 387–426 (1969) · Zbl 0195.27003
[42] Hofer, D.: Simulation von Grösseneffekten mit mikromorphen Theorien. Ph.D-Thesis, Department of Mechanics. TU Darmstadt, http://elib.tu-darmstadt.de (2003)
[43] Iesan, D.: Existence theorems in micropolar elastostatics. Int. J. Eng. Sci. 9, 59 (1971) · Zbl 0218.73003 · doi:10.1016/0020-7225(71)90013-9
[44] Iesan, D., Pompei, A.: On the equilibrium theory of microstretch elastic solids. Int. J. Eng. Sci. 33, 399–410 (1995) · Zbl 0899.73461 · doi:10.1016/0020-7225(94)00067-T
[45] Iesan, D., Quintanilla, R.: Existence and continuous dependence results in the theory of microstretch elastic bodies. Int. J. Eng. Sci. 32, 991–1001 (19940 · Zbl 0924.73202 · doi:10.1016/0020-7225(94)90051-5
[46] Iesan, D., Scalia, A.: On Saint-Venants principle for microstretch elastic bodies. Int. J. Eng. Sci. 35, 1277–1290 (1997) · Zbl 0902.73012 · doi:10.1016/S0020-7225(97)00049-9
[47] Iordache, M.M., Willam, K.: Localized failure analysis in elastoplastic Cosserat continua. Comput. Methods Appl. Mech. Eng. 151, 559–586 (1998) · Zbl 0916.73034 · doi:10.1016/S0045-7825(97)00166-7
[48] Kröner, E.: Mechanics of generalized continua. In: Proceedings of the IUTAM-Symposium on the generalized Cosserat continuum and the continuum theory of dislocations with applications in Freudenstadt, 1967. Springer, Berlin Heidelberg New York (1968) · Zbl 0156.22803
[49] Marsden, J.E., Hughes, J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, New Jersey (1983) · Zbl 0545.73031
[50] Maugin, G.A.: On the structure of the theory of polar elasticity. Philos. Trans. R. Soc. Lond., A 356, 1367–1395 (1998) · Zbl 0916.73005 · doi:10.1098/rsta.1998.0226
[51] Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1962) · Zbl 0112.38906 · doi:10.1007/BF02327219
[52] Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–77 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[53] Mindlin, R.D., Tiersten, H.F.: Effects of couple stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–447 (1962) · Zbl 0112.38906 · doi:10.1007/BF00253946
[54] Mandel, J.: Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973) · Zbl 0255.73004 · doi:10.1016/0020-7683(73)90120-0
[55] Murdoch, A.I.: Objectivity in classical continuum physics: a rational for discarding the ’principle of invariance under superposed rigid body motions’ in favour of purely objective considerations. Contin. Mech. Thermodyn. 15, 309–320 (2003) · Zbl 1068.74515 · doi:10.1007/s00161-003-0121-9
[56] Neff, P.: Finite multiplicative plasticity for small elastic strains with linear balance equations and grain boundary relaxation. Contin. Mech. Thermodyn. 15(2) 161–195 (2003) doi: 10.1007/s00161-002-0190-x · Zbl 1035.74015 · doi:10.1007/s00161-002-0109-x
[57] Neff, P.: A geometrically exact micromorphic elastic solid. Modelling and existence of minimizers. Preprint 2318 http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp04.html (2/2004) · Zbl 1158.74419
[58] Neff, P.: Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. R. Soc. Edinb., A 136, 997–1012 (2006) · Zbl 1106.74010 · doi:10.1017/S0308210500004844
[59] Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. Preprint 2373, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp04.html (9/2004) · Zbl 1206.74019
[60] Neff, P.: Finite multiplicative elastic-viscoplastic Cosserat micropolar theory for polycrystals with grain rotations. Modelling and mathematical analysis. Preprint 2297, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp03.html (9/2003)
[61] Neff, P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2006.04.002 · Zbl 1213.74032
[62] Neff, P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z. Angew. Math. Mech. doi: 10.1002/zamm.200510281 · Zbl 1104.74007
[63] Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon, Oxford (1986) · Zbl 0604.73020
[64] Onck, P.R., Andrews, E.W., Gibson, L.J.: Size effects in ductile cellular solids. Part I : modeling. Int. J. Mech. Sci. 43, 681–699 (2001) · Zbl 1071.74682 · doi:10.1016/S0020-7403(00)00042-4
[65] Oshima, N.: Dynamics of granular media. In: Kondo, K. (ed) Memoirs of the unifying study of the basic problems in engineering science by means of geometry, vol. 1, Division D-VI, pp. 111–120 (563–572). Gakujutsu Bunken Fukyo-Kai (1955)
[66] Podio-Guidugli, P., Vergara Caffarelli, G.: Extreme elastic deformations. Arch. Ration. Mech. Anal. 115, 311–328 (1991) · Zbl 0784.73007 · doi:10.1007/BF00375278
[67] Pradel, F., Sab, K.: Homogenization of discrete media. J. Phys., IV 8, Pr8–317–324 (1998) · Zbl 0968.74052
[68] Sansour, C.: Ein einheitliches Konzept verallgemeinerter Kontinua mit Mikrostruktur unter besonderer Berücksichtigung der finiten Viskoplastizität. Habilitation-Thesis, Shaker-Verlag, Aachen (1999)
[69] Schaefer, H.: Das Cosserat-Kontinuum. ZAMM 47, 485–498 (1967) · Zbl 0189.27102 · doi:10.1002/zamm.19670470802
[70] Sharma, P., Dasgupta, A.: Scale–dependent average elastic fields of spherical and cylindrical inhomogeneities in micropolar medium and overall properties. Technical Report 2001CRD130, GE Research and Development Center, New York, USA (2001)
[71] Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8): 1063–1084 (1994) · Zbl 0945.74523 · doi:10.1016/0020-7683(94)90164-3
[72] Steinmann, P.: A unifying treatise of variational principles for two types of micropolar continua. Acta Mech. 121, 215–232 (1997) · Zbl 0878.73004 · doi:10.1007/BF01262533
[73] Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207 (1997) · Zbl 0933.74004 · doi:10.1007/BF01186967
[74] Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–413 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[75] Toupin, R.A.: Theory of elasticity with couple stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964) · Zbl 0131.22001 · doi:10.1007/BF00253050
[76] Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed) Handbuch der Physik, vol. III/3. Springer, Berlin Heidelberg New York (1965) · Zbl 0779.73004
[77] Yang, J.F., Lakes, R.S.: Transient study of couple stress effects in compact bone : torsion. J. Biomech. Eng. 103, 275–279 (1981) · doi:10.1115/1.3138292
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.