zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An improved $r$-factor algorithm for TVD schemes. (English) Zbl 1206.76039
Summary: An improved $r$-factor algorithm for TVD schemes on structured and unstructured grids within a finite volume method framework is proposed for numerical approximation to the convective term. The new algorithm is tested by a problem of pure convection with a double-step profile in an oblique uniform velocity field. The computational results are then compared with the results of Darwish’s $r$-factor algorithm using Superbee and Osher limiters on both structured and unstructured grids. The numerical results show that the new algorithm can mitigate the oscillation behavior efficiently while still maintaining the boundedness of the solutions. When using a deferred correction technique to handle the non-linear term arising from the high resolution schemes, the proposed algorithm showed a smoother and faster convergence history on structured grids than Darwish’ $r$-factor algorithm, while on unstructured grids the presented one is more accurate with a similar convergence history.

76M20Finite difference methods (fluid mechanics)
65M06Finite difference methods (IVP of PDE)
65M50Mesh generation and refinement (IVP of PDE)
76R05Forced convection (fluid mechanics)
76R10Free convection (fluid mechanics)
Full Text: DOI
[1] Leonard, B. P.; Lock, A. P.; Macvean, M. K.: Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes, Mon. weather rev. 124, No. 11, 2588-2606 (1996)
[2] Tao, Wen-Quan: Numerical heat transfer, (2004)
[3] Leonard, B. P.: A survey of finite differences with upwinding for numerical modeling of the incompressible convective diffusion equation, Computational techniques in transient and turbulent flows, 1-31 (1981)
[4] De Vahl Davis, G.; Mallinson, G. D.: An evaluation of upwind and central difference approximation by a study of recirculating flow, Comput. fluids 4, 29-43 (1976) · Zbl 0329.76025 · doi:10.1016/0045-7930(76)90010-4
[5] Leonard, B. P.: A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Comput. meth. Appl. mech. Eng. 29, 59-98 (1979) · Zbl 0423.76070 · doi:10.1016/0045-7825(79)90034-3
[6] Hayase, T.; Humphery, J. A. C.; Grief, A. R.: A consistently formulated QUICK scheme for fast and stable convergence using finite volume iterative calculation procedure, J. comput. Phys. 93, 108-118 (1992) · Zbl 0743.76054 · doi:10.1016/0021-9991(92)90177-Z
[7] Harten, A.: High resolution schemes for hyperbolic conservation laws, J. comput. Phys. 49, 357-393 (1983) · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[8] Warming, R. F.; Beam, Richard M.: Upwind second order difference schemes and applications in aerodynamics, Aiaa j. 14, No. 9, 1241-1249 (1976) · Zbl 0364.76047 · doi:10.2514/3.61457
[9] Steger, J. L.; Warming, R. F.: Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods, J. comput. Phys. 40, 263-293 (1981) · Zbl 0468.76066 · doi:10.1016/0021-9991(81)90210-2
[10] Sweby, P. K.: High resolution schemes using flux-limiters for hyperbolic conservation laws, SIAM J. Numer. anal. 21, 995-1011 (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[11] Godunov, S. K.: A difference scheme for numerical computation of discontinuous solution of hydrodynamics equations, Mat. sb. 47, 271-306 (1959)
[12] Roe, P. L.: Approximate Riemann solvers, parameter vectors and difference schemes, J. comput. Phys. 43, 357-372 (1981) · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[13] Jeng, Y. N.; Payne, U. J.: An adaptive TVD limiters, J. comput. Phys. 118, 229-241 (1995) · Zbl 0841.65077 · doi:10.1006/jcph.1995.1095
[14] Piperno, S.; Depeyre, S.: Criteria for the design of limiters yielding efficient high resolution TVD schemes, Comput. fluids 27, 183-197 (1998) · Zbl 0911.76066 · doi:10.1016/S0045-7930(97)00045-5
[15] Song, Song-He; Chen, Mao-Zhang: TVD style finite volume method on unstructured meshes in two dimensions, Acta aeronaut. ET astronaut. Sinica 22, No. 3, 244-246 (2001)
[16] Sohn, Sung-Ik: A new TVD-MUSCL scheme for hyperbolic conservation laws, Comput. math. Appl. 50, 231-248 (2005) · Zbl 1085.65083 · doi:10.1016/j.camwa.2004.10.047
[17] Roe, P. L.: Some contributions to the modeling of discontinuous flows, Lect. appl. Math. 22, 163-193 (1985)
[18] Wei, Jin-Jia; Yu, Bo; Tao, Wen-Quan; Kawaguchi, Yasuo; Wang, Huang-Sheng: A new high-order-accurate and bounded scheme for incompressible flow, Numer. heat transfer part B 43, 19-41 (2003)
[19] C. Bruner, R. Walters, Parallelization of the Euler equations on unstructured grids, AIAA paper, 1995, pp. 97 -- 1894.
[20] Darwish, M. S.; Moukalled, F.: TVD schemes for unstructured grids, Int. J. Heat mass transfer 46, No. 4, 599-611 (2003) · Zbl 1121.76357 · doi:10.1016/S0017-9310(02)00330-7
[21] Zheng, Bo; Lee, Chun-Hian: The effects of limiters on high resolution computations of hypersonic flows over bodies with complex shapes, Commun. nonlinear sci. Numer. simul. 3, No. 6, 82-87 (1998) · Zbl 0922.35139 · doi:10.1016/S1007-5704(98)90068-5
[22] Kadalbajoo, M. K.; Kumar, Ritesh: A high resolution total variation diminishing scheme for hyperbolic conservation law and related problems, Appl. math. Comput. 175, 1556-1573 (2006) · Zbl 1118.65094 · doi:10.1016/j.amc.2005.09.006