zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism. (English) Zbl 1206.78008
The author reviews some numerical methods dealing with various forms of the Landau-Lifshitz equation. In the first part of the paper, the author develops the micromagnetic model and there are recalled some basic properties of the micromagnetic system. Next, numerical schemes are studied for which no rigorous convergence analysis is known, as well as some methods for which convergence results have been deeply understood. In the last part of this paper, several computational studies are performed presenting the behavior of the selected schemes. A particular example deals with adaptivity strategies for the Landau-Lifshitz equation.

MSC:
78A25General electromagnetic theory
76E25Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
78M25Numerical methods in optics
WorldCat.org
Full Text: DOI
References:
[1] Kružík M, Prohl A (2006) Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev 48:439--483 · Zbl 1126.49040 · doi:10.1137/S0036144504446187
[2] Bertotti G (1998) Hysteresis in magnetism. Academic Press, San Diego · Zbl 0911.53050
[3] Landau L, Lifshitz E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion 8:153--169 · Zbl 0012.28501
[4] Gilbert T (1955) A Lagrangian formulation of gyromagnetic equation of the magnetization field. Phys Rev 100:1243--1255
[5] d’Aquino M, Serpico C, Miano G (2005) Geometrical integration of Landau-Lifshitz-Gilbert equation based on the mid-point rule. J Comput Phys 209:730--753 · Zbl 1066.78006 · doi:10.1016/j.jcp.2005.04.001
[6] Prohl A (2001) Computational Micromagnetism. Advances in numerical mathematics. Teubner, Stuttgart · Zbl 0988.78001
[7] Cimrák I (2005) Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field. IMA J Numer Anal 25:611--634 · Zbl 1116.78025 · doi:10.1093/imanum/dri011
[8] Podio-Guidugli P (2001) On dissipation mechanisms in micromagnetics. Eur Phys J B 19:417--424 · doi:10.1007/s100510170318
[9] Monk P, Vacus O (2001) Accurate discretization of a non-linear micromagnetic problem. Comput Methods Appl Mech Eng 190:5243--5269 · Zbl 0991.78004 · doi:10.1016/S0045-7825(01)00176-1
[10] Baňas L, Bartels S, Prohl A. (2008) A convergent implicit discretization of the Maxwell-Landau-Lifshitz-Gilbert equation. SIAM J Numer Anal (accepted). http://na.uni-tuebingen.de/pub/prohl/papers/mllg.pdf · Zbl 1173.35321
[11] Bartels S, Prohl A (2006) Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation. SIAM J Numer Anal 44:1405--1419 · Zbl 1124.65088 · doi:10.1137/050631070
[12] Brown W (1963) Thermal fluctuations of a single domain particle. Phys Rev 130:1677--1686 · doi:10.1103/PhysRev.130.1677
[13] Kubo R, Toda M, Hashitsume N (1991) Nonequilibrium statistical mechanics. Statistical physics, vol 2. Springer, Berlin · Zbl 0757.60109
[14] Tsiantos V, Scholz W, Suess D, Schrefl T, Fidler J (2002) The effect of the cell size in Langevin micromagnetic simulations. J Magn Magn Mater 242--245:999--1001 · doi:10.1016/S0304-8853(01)01365-8
[15] Garcia-Palacios L, Lazaro FJ (1998) Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys Rev B 58:14937--14958 · doi:10.1103/PhysRevB.58.14937
[16] Scholz W, Schrefl T, Fidler J (2001) Micromagnetic simulation of thermally activated switching in fine particles. J Magn Magn Mater 233:296--304 · doi:10.1016/S0304-8853(01)00032-4
[17] Cheng XZ, Jalil MBA, Lee HK, Okabe Y (2006) Mapping the Monte-Carlo scheme to Langevin dynamics: A Fokker-Planck approach. Phys Rev Lett 96:067208 · doi:10.1103/PhysRevLett.96.067208
[18] Baňas L, Prohl A, Slodička M. Modeling od thermally assisted magnetodynamics. Preprint, http://na.uni-tuebingen.de/pub/prohl/papers/thermagA5.pdf · Zbl 1192.74102
[19] Cimrák I, Melicher V (2007) Sensitivity analysis framework for micromagnetism with application to optimal shape design of MRAM memories. Inverse Probl 23:563--588 · Zbl 1115.35146 · doi:10.1088/0266-5611/23/2/007
[20] Cimrák I, Melicher V (2006) The Landau-Lifshitz model for shape optimization of MRAM memories. PAMM 6:23--26 · doi:10.1002/pamm.200610007
[21] Tai X, Chan T (2004) A survey on multipole level set methods with applications for identifying piecewise constant functions. Int J Numer Anal Model 1:25--47 · Zbl 1076.49020
[22] Melicher V, Cimrák I, Van Keer R (2008) Level Set Method for optimal shape design of MRAM core. Micromagnetic approach. Physica B: Condens Matter 403:308--311 · doi:10.1016/j.physb.2007.08.036
[23] Carbou G, Fabrie P (2001) Regular solutions for Landau-Lifshitz Equation in a bounded domain. Diff Integral Equ 14:213--229 · Zbl 1161.35421
[24] Guo B, Ding S (2001) Neumann problem for the Landau-Lifshitz-Maxwell system in two dimensions. Chin Ann Math Ser B 22:529--540 · Zbl 1007.78003 · doi:10.1142/S0252959901000504
[25] Lewis D, Nigam N (2003) Geometric integration on spheres and some interesting applications. J Comput Appl Math 151:141--170 · Zbl 1013.65111 · doi:10.1016/S0377-0427(02)00743-4
[26] E W, Wang X-P (2000) Numerical methods for the Landau-Lifshitz equation. SIAM J Numer Anal 38:1647--1665 · Zbl 0988.65079 · doi:10.1137/S0036142999352199
[27] Krishnaprasad P, Tan X (2001) Cayley transforms in micromagnetics. Physica B 306:195--199 · doi:10.1016/S0921-4526(01)01003-1
[28] Lewis D, Nigam N (2000) A geometric integration algorithm with applications to micromagnetics. Technical Report 1721, IMA preprint series
[29] Monk P, Vacus O (1999) Error estimates for a numerical scheme for ferromagnetic problems. SIAM J Numer Anal 36:696--718 · Zbl 0924.65113 · doi:10.1137/S0036142997324228
[30] Serpico C, Mayergoyz I, Bertotti G (2001) Numerical technique for integration of the Landau-Lifshitz equation. J Appl Phys 89:6991--6993 · doi:10.1063/1.1358818
[31] Cimrák I (2007) Error analysis of numerical scheme for 3D Maxwell-Landau-Lifshitz system. Math Methods Appl Sci 30:1667--1683 · Zbl 1152.35050 · doi:10.1002/mma.863
[32] Cimrák I (2007) Existence, regularity and local uniqueness of the solutions to the Maxwell-Landau-Lifshitz system in three dimensions. J Math Anal Appl 329:1080--1093 · Zbl 1154.35453 · doi:10.1016/j.jmaa.2006.06.080
[33] Cimrák I (2008) Regularity properties of the solutions to the 3D Maxwell-Landau-Lifshitz system in weighted Sobolev spaces. J Comput Appl Math 215:320--327 · Zbl 1137.78005 · doi:10.1016/j.cam.2006.03.044
[34] Alouges F, Soyeur A (1992) On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness. Nonlinear Anal 18:1071--1094 · Zbl 0788.35065 · doi:10.1016/0362-546X(92)90196-L
[35] Guo B, Hong M (1993) The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc Var Partial Differ Equ 1:311--334 · Zbl 0798.35139 · doi:10.1007/BF01191298
[36] Slodička M, Cimrák I (2003) Numerical study of nonlinear ferromagnetic materials. Appl Numer Math 46:95--111 · Zbl 1027.78002
[37] Cimrák I, Slodička M (2004) An iterative approximation scheme for the Landau-Lifshitz-Gilbert equation. J Comput Appl Math 169:17--32 · Zbl 1107.78310 · doi:10.1016/j.cam.2003.10.022
[38] Cimrák I, Slodička M (2004) Optimal convergence rate for Maxwell-Landau-Lifshitz system. Physica B 343:236--240 · doi:10.1016/j.physb.2003.08.100
[39] Slodička M, Baňas L (2004) A numerical scheme for a Maxwell-Landau-Lifshitz-Gilbert System. Appl Math Comput 158:79--99 · Zbl 1099.78020 · doi:10.1016/j.amc.2003.08.065
[40] Slodička M, Cimrák I (2004) Improved error estimates for a Maxwell-Landau-Lifshitz system. PAMM 4:71--74 · doi:10.1002/pamm.200410018
[41] Alouges F, Jaisson P (2006) Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism. Math Models Methods Appl Sci 16:299--316 · Zbl 1102.35333 · doi:10.1142/S0218202506001169
[42] Bartels S, Ko J, Prohl A (2007) Numerical approximation of the Landau-Lifshitz-Gilbert equation and finite time blow-up of weak solutions. Math Comput (accepted)
[43] Barret J, Bartels X, Feng S, Prohl A (2007) A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres. SIAM J Numer Anal 45:905--927 · Zbl 1155.35055 · doi:10.1137/050639429
[44] Bartels S (2006) Constraint preserving, inexact solution of implicit discretizations of Landau-Lifshitz-Gilbert equations and consequences for convergence. PAMM 6:19--22 · doi:10.1002/pamm.200610006
[45] Bartels S, Prohl A (2007) Constraint preserving implicit finite element discretization of harmonic map heat flow into spheres. Math Comp 76:1847--1859 · Zbl 1124.65089 · doi:10.1090/S0025-5718-07-02026-1
[46] Bartels S (2004) Stability and convergence of finite element approximation schemes for harmonic maps. SIAM J Numer Anal 43:220--238 · Zbl 1090.35014 · doi:10.1137/040606594
[47] Bartels S, Prohl A, Lubich C. Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Preprint · Zbl 1198.65178
[48] Bartels S, Prohl A. Convergence of an implicit, constraint preserving finite element discretization of p-harmonic heat flow into spheres. Preprint · Zbl 1155.65068
[49] Monk P (2003) Finite element methods for Maxwell’s equations. Numerical mathematics and scientific computation. Oxford University Press, London · Zbl 1024.78009
[50] Carbou G, Fabrie P (2001) Time average in micromagnetism. J Differ Equ 147:383--409 · Zbl 0931.35170 · doi:10.1006/jdeq.1998.3444
[51] Baňas L (2005) Numerical methods for the Landau-Lifshitz-Gilbert equation. In: Li Z, Vulkov L, Wasniewski J (eds) Numerical analysis and its applications: third international conference, NAA 2004, Rousse, Bulgaria, vol 3401. Springer, Berlin, p 158
[52] Mayergoyz I, Serpico C, Shimizu Y (2000) Coupling between eddy currents and Landau-Lifshitz dynamics. J Appl Phys 87:5529--5531 · doi:10.1063/1.373394
[53] Webpage address: http://www.ctcms.nist.gov/$\sim$rdm/mumag.org.html
[54] Baňas L (2005) Adaptive methods for dynamical micromagnetics. In: Bermúdez de Castro A, Gómez D, Quintela P, Salgado P (eds) Proceedings of ENUMATH 2005, Santiago de Compostela, Spain. Springer, Berlin
[55] Baňas L (2004) On dynamical micromagnetism with magnetostriction. Ghent University, Belgium, PhD thesis, http://cage.ugent.be/$\sim$lubo/