×

CUDAEASY – a GPU accelerated cosmological lattice program. (English) Zbl 1206.83008

Summary: This paper presents, to the author’s knowledge, the first graphics processing unit (GPU) accelerated program that solves the evolution of interacting scalar fields in an expanding universe. We present the implementation in NVIDIA’s Compute Unified Device Architecture (CUDA) and compare the performance to other similar programs in chaotic inflation models. We report speedups between one and two orders of magnitude depending on the used hardware and software while achieving small errors in single precision. Simulations that used to last roughly one day to compute can now be done in hours and this difference is expected to increase in the future. The program has been written in the spirit of LATTICEEASY and users of the aforementioned program should find it relatively easy to start using CUDAEASY in lattice simulations. The program is available at http://www.physics.utu.fi/theory/particlecosmology/cudaeasy/ under the GNU General Public License.

MSC:

83-08 Computational methods for problems pertaining to relativity and gravitational theory
83F05 Relativistic cosmology
83C15 Exact solutions to problems in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[3] Wang, P.; Abel, T.; Kaehler, R.
[4] Banerjee, S.; Baumgardt, H.; Kroupa, P.
[5] Hagiwara, K.; Kanzaki, J.; Okamura, N.; Rainwater, D.; Stelzer, T.
[6] Capuzzo-Dolcetta, R.
[7] Khanna, G.; McKennon, J.
[8] Nakasato, N.
[9] Groen, D.; Harfst, S.; Portegies Zwart, S.
[10] Jonsson, P. B.; Primack, J.
[11] Schive, H. Y.; Tsai, Y. C.; Chiueh, T.
[12] Chung, S. K.; Wen, L.; Blair, D.; Cannon, K.; Datta, A.
[13] Demchik, V.; Strelchenko, A.
[14] Gaburov, E.; Harfst, S.; Zwart, S. P.
[15] Ord, S.; Greenhill, L.; Wayth, R.; Mitchell, D.; Dale, K.; Pfister, H.; Edgar, R. G.
[16] Ford, E. B., New Astron., 14, 406 (2009)
[17] Anselmi, V.; Conti, G.; Di Renzo, F.
[18] Szalay, T.; Springel, V.; Lemson, G.
[19] Ishikawa, K. I.
[20] Zwart, S. P.; McMillan, S.; Harfst, S.; Groen, D.; Fujii, M., New Astron., 14, 369 (2009)
[21] Brunner, R. J.; Kindratenko, V. V.; Myers, A. D.
[22] Belleman, R. G.; Bedorf, J.; Zwart, S. P., New Astron., 13, 103 (2008)
[23] Januszewski, M.; Kostur, M.
[26] von Hoerner, S., Zeitschrift für Astrophysik, 50, 184 (1960)
[27] von Hoerner, S., Zeitschrift für Astrophysik, 57, 47 (1963)
[28] Bertschinger, E., Annual Review of Astronomy and Astrophysics, 36, 599 (1998)
[29] Felder, G. N.; Tkachev, I.
[30] Felder, G. N.; Tkachev, I.
[31] Frolov, A. V., JCAP, 0811, 009 (2008)
[32] Podolsky, D. I.; Felder, G. N.; Kofman, L.; Peloso, M., Physical Review D, 73, 023501 (2006)
[33] Kahan, W., Communications of the ACM, 8, 1 (1965)
[34] Patra, M.; Karttunen, M., Numerical Methods for PDEs, 22, 936 (2005)
[36] Enqvist, K.; Jokinen, A.; Mazumdar, A.; Multamaki, T.; Vaihkonen, A., Physical Review Letters, 94, 161301 (2005)
[37] Chambers, A.; Rajantie, A., Physical Review Letters, 101, 149903 (2008)
[38] Chambers, A.; Rajantie, A., JCAP, 0808, 002 (2008)
[39] Chambers, A.; Nurmi, S.; Rajantie, A.
[40] Multamaki, T.; Vilja, I., Physics Letters B, 535, 170 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.