Hotta, Kyosuke; Kubota, Takahiro; Nishinaka, Takahiro Galilean conformal algebra in two dimensions and cosmological topologically massive gravity. (English) Zbl 1206.83100 Nucl. Phys., B 838, No. 3, 358-370 (2010). Summary: We consider a realization of the Galilean conformal algebra (GCA) in two-dimensional space-time on the AdS boundary of a particular three-dimensional gravity theory, the so-called cosmological topologically massive gravity (CTMG), which includes the gravitational Chern-Simons term and the negative cosmological constant. The infinite-dimensional GCA in two dimensions is obtained from the Virasoro algebra for the relativistic CFT by taking a scaling limit \(t\rightarrow t\), \(x\rightarrow \epsilon x\) with \(\epsilon\rightarrow 0\). The parent relativistic CFT should have left and right central charges of order \({\mathcal O}(1/\epsilon)\) but opposite in sign in the limit \(\epsilon\rightarrow 0\). On the other hand, by Brown-Henneaux’s analysis the Virasoro algebra is realized on the boundary of \(AdS_{3}\), but the left and right central charges are asymmetric only by the factor of the gravitational Chern-Simons coupling \(1/\mu \). If \(\mu \) behaves as of order \({\mathcal O}((\epsilon)\) under the corresponding limit, we have the GCA with non-trivial centers on AdS boundary of the bulk CTMG. Then we present a new entropy formula for the Galilean field theory from the bulk black hole entropy, which is a non-relativistic counterpart of the Cardy formula. It is also discussed whether it can be reproduced by the microstate counting. Cited in 10 Documents MSC: 83C57 Black holes 94A17 Measures of information, entropy 83E30 String and superstring theories in gravitational theory 81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations 81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics 80A10 Classical and relativistic thermodynamics Keywords:black hole; entropy; topologically massive gravity; AdS/CFT; infinite-dimensional algebra PDF BibTeX XML Cite \textit{K. Hotta} et al., Nucl. Phys., B 838, No. 3, 358--370 (2010; Zbl 1206.83100) Full Text: DOI arXiv OpenURL References: [1] Nishida, Y.; Son, D.T., Nonrelativistic conformal field theories, Phys. rev. D, 76, 086004, (2007) [2] Son, D.T., Toward an AdS/cold atoms correspondence: A geometric realization of the Schrödinger symmetry, Phys. rev. D, 78, 046003, (2008) [3] Balasubramanian, K.; McGreevy, J., Gravity duals for non-relativistic cfts, Phys. rev. lett., 101, 061601, (2008) · Zbl 1228.81247 [4] Bagchi, A.; Gopakumar, R., Galilean conformal algebras and AdS/CFT, Jhep, 0907, 037, (2009) [5] Alishahiha, M.; Davody, A.; Vahedi, A., On AdS/CFT of Galilean conformal field theories, Jhep, 0908, 022, (2009) [6] Bagchi, A.; Mandal, I., On representations and correlation functions of Galilean conformal algebras, Phys. lett. B, 675, 393, (2009) [7] Martelli, D.; Tachikawa, Y., Comments on Galilean conformal field theories and their geometric realization · Zbl 1287.81044 [8] Duval, C.; Horvathy, P.A., Non-relativistic conformal symmetries and Newton-Cartan structures, J. phys. A, 42, 465206, (2009) · Zbl 1180.37078 [9] de Azcarraga, J.A.; Lukierski, J., Galilean superconformal symmetries, Phys. lett. B, 678, 411, (2009) [10] Sakaguchi, M., Super Galilean conformal algebra in AdS/CFT · Zbl 1310.81135 [11] Bagchi, A.; Mandal, I., Supersymmetric extension of Galilean conformal algebras, Phys. rev. D, 80, 086011, (2009) [12] Mukhopadhyay, A., A covariant form of the Navier-Stokes equation for the Galilean conformal algebra, Jhep, 1001, 100, (2010) · Zbl 1269.76030 [13] Hosseiny, A.; Rouhani, S., Affine extension of Galilean conformal algebra in \(2 + 1\) dimensions · Zbl 1310.81130 [14] Bagchi, A.; Gopakumar, R.; Mandal, I.; Miwa, A., GCA in 2d · Zbl 1291.81346 [15] Hosseiny, A.; Rouhani, S., Logarithmic correlators in non-relativistic conformal field theory · Zbl 1314.81145 [16] Mandal, I., Supersymmetric extension of GCA in 2d · Zbl 1294.81244 [17] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, San Francisco, 1973, 1279 p [18] Brown, J.D.; Henneaux, M., Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Comm. math. phys., 104, 207, (1986) · Zbl 0584.53039 [19] Deser, S.; Jackiw, R., Three-dimensional cosmological gravity: dynamics of constant curvature, Ann. physics, 153, 405, (1984) [20] Deser, S.; Jackiw, R.; Templeton, S.; Deser, S.; Jackiw, R.; Templeton, S.; Deser, S.; Jackiw, R.; Templeton, S.; Deser, S.; Jackiw, R.; Templeton, S., Topologically massive gauge theories, Phys. rev. lett., Ann. physics, Ann. physics, Ann. physics, 281, 409, (2000), Erratum [21] Kraus, P.; Larsen, F.; Kraus, P.; Larsen, F., Holographic gravitational anomalies, Jhep, Jhep, 0601, 022, (2006) [22] Solodukhin, S.N., Holography with gravitational Chern-Simons, Phys. rev. D, 74, 024015, (2006) [23] Sahoo, B.; Sen, A., BTZ black hole with Chern-Simons and higher derivative terms, Jhep, 0607, 008, (2006) [24] Park, M.-I.; Park, M.-I., BTZ black hole with higher derivatives, the second law of thermodynamics, and statistical entropy: A new proposal, Phys. rev. D, Phys. rev. D, 77, 126012, (2008) [25] Tachikawa, Y.; Hole, Black, Entropy in the presence of Chern-Simons terms, Classical quantum gravity, 24, 737, (2007) · Zbl 1170.83424 [26] Park, M.-I., Holography in three-dimensional Kerr-de Sitter space with a gravitational Chern-Simons term, Classical quantum gravity, 25, 135003, (2008) · Zbl 1180.83073 [27] Gupta, R.K.; Sen, A., Consistent truncation to three-dimensional (super-)gravity, Jhep, 0803, 015, (2008) [28] Li, W.; Song, W.; Strominger, A., Chiral gravity in three dimensions, Jhep, 0804, 082, (2008) · Zbl 1246.83158 [29] Carlip, S.; Deser, S.; Waldron, A.; Wise, D.K.; Carlip, S.; Deser, S.; Waldron, A.; Wise, D.K., Topologically massive AdS gravity, Classical quantum gravity, Phys. lett. B, 666, 272, (2008) · Zbl 1328.83126 [30] Hotta, K.; Hyakutake, Y.; Kubota, T.; Tanida, H., Brown-Henneaux’s canonical approach to topologically massive gravity, Jhep, 0807, 066, (2008) [31] Grumiller, D.; Johansson, N., Instability in cosmological topologically massive gravity at the chiral point, Jhep, 0807, 134, (2008) · Zbl 1173.83315 [32] Carlip, S.; Carlip, S., Chiral topologically massive gravity and extremal B-F scalars, Jhep, Jhep, 0909, 083, (2009) [33] Giribet, G.; Kleban, M.; Porrati, M., Topologically massive gravity at the chiral point is not chiral, Jhep, 0810, 045, (2008) · Zbl 1245.83040 [34] Myung, Y.-S., Logarithmic conformal field theory approach to topologically massive gravity, Phys. lett. B, 670, 220, (2008) [35] Henneaux, M.; Martinez, C.; Troncoso, R., Asymptotically anti-de Sitter spacetimes in topologically massive gravity, Phys. rev. D, 79, 081502, (2009) [36] Maloney, A.; Song, W.; Strominger, A., Chiral gravity, log gravity and extremal CFT [37] Hotta, K.; Hyakutake, Y.; Kubota, T.; Nishinaka, T.; Tanida, H., Left-right asymmetric holographic RG flow with gravitational Chern-Simons term, Phys. lett. B, 680, 279, (2009) [38] Skenderis, K.; Taylor, M.; van Rees, B.C., Topologically massive gravity and the AdS/CFT correspondence, Jhep, 0909, 045, (2009) [39] Miskovic, O.; Olea, R., Background-independent charges in topologically massive gravity, Jhep, 0912, 046, (2009) [40] Grumiller, D.; Sachs, I., Ads3/LCFT2 - correlators in cosmological topologically massive gravity [41] Bañados, M.; Teitelboim, C.; Zanelli, J., The black hole in three-dimensional space-time, Phys. rev. lett., 69, 1849, (1992) · Zbl 0968.83514 [42] Cardy, J.L., Operator content of two-dimensional conformally invariant theories, Nucl. phys. B, 270, 186, (1986) · Zbl 0689.17016 [43] Blagojevic, M.; Cvetkovic, B., Canonical structure of 3-D gravity with torsion, (), 85 [44] Garcia, A.A.; Hehl, F.W.; Heinicke, C.; Macias, A., Exact vacuum solution of a \((1 + 2)\)-dimensional Poincaré gauge theory: BTZ solution with torsion, Phys. rev. D, 67, 124016, (2003) [45] Moussa, K.A.; Clement, G.; Leygnac, C., The black holes of topologically massive gravity, Classical quantum gravity, 20, L277, (2003) · Zbl 1043.83021 [46] Deser, S.; Tekin, B., Energy in topologically massive gravity, Classical quantum gravity, 20, L259, (2003) · Zbl 1045.83029 [47] Deser, S.; Kanik, I.; Tekin, B., Conserved charges of higher D Kerr-AdS spacetimes, Classical quantum gravity, 22, 3383, (2005) · Zbl 1135.83009 [48] Olmez, S.; Sarioglu, O.; Tekin, B., Mass and angular momentum of asymptotically AdS or flat solutions in the topologically massive gravity, Classical quantum gravity, 22, 4355, (2005) · Zbl 1087.83522 [49] Bouchareb, A.; Clement, G., Black hole mass and angular momentum in topologically massive gravity, Classical quantum gravity, 24, 5581, (2007) · Zbl 1148.83320 [50] Wald, R.M., Black hole entropy is the Noether charge, Phys. rev. D, 48, R3427, (1993) · Zbl 0942.83512 [51] Jacobson, T.; Kang, G.; Myers, R.C.; Jacobson, T.; Kang, G.; Myers, R.C., Increase of black hole entropy in higher curvature gravity, Phys. rev. D, Phys. rev. D, 52, 3518, (1995) [52] Iyer, V.; Wald, R.M., Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. rev. D, 50, 846, (1994) [53] Park, M.-I.; Park, M.-I., Can Hawking temperatures be negative?, Phys. lett. B, Phys. lett. B, 663, 259, (2008) · Zbl 1328.83108 [54] Gurarie, V., Logarithmic operators in conformal field theory, Nucl. phys. B, 410, 535, (1993) · Zbl 0990.81686 [55] Flohr, M.A.I., On modular invariant partition functions of conformal field theories with logarithmic operators, Internat. J. modern phys. A, 11, 4147, (1996) · Zbl 1044.81713 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.