Differential evolution in constrained numerical optimization: an empirical study. (English) Zbl 1206.90226

Summary: Motivated by the recent success of diverse approaches based on differential evolution (DE) to solve constrained numerical optimization problems, in this paper, the performance of this novel evolutionary algorithm is evaluated. Three experiments are designed to study the behavior of different DE variants on a set of benchmark problems by using different performance measures proposed in the specialized literature. The first experiment analyzes the behavior of four DE variants in 24 test functions considering dimensionality and the type of constraints of the problem. The second experiment presents a more in-depth analysis on two DE variants by varying two parameters (the scale factor and the population size), which control the convergence of the algorithm. From the results obtained, a simple but competitive combination of two DE variants is proposed and compared against state-of-the-art DE-based algorithms for constrained optimization in the third experiment. The study in this paper shows (1) important information about the behavior of DE in constrained search spaces and (2) the role of this knowledge in the correct combination of variants, based on their capabilities, to generate simple but competitive approaches.


90C59 Approximation methods and heuristics in mathematical programming
65K05 Numerical mathematical programming methods


CEC 05
Full Text: DOI


[1] Barbosa, H.J.; Lemonge, A.C., A new adaptive penalty scheme for genetic algorithms, Information sciences, 156, 3-4, 215-251, (2003)
[2] Bernardino, H.S.; Barbosa, H.J.C.; Lemonge, A.C.C.; Fonseca, L.G., A new hybrid AIS-GA for constrained optimization problems in mechanical engineering, (), 1455-1462
[3] Brest, J.; Zumer, V.; Maucec, M.S., Self-adaptive differential evolution algorithm in constrained real-parameter optimization, (), 919-926
[4] Cagnina, L.; Esquivel, S.; Coello Coello, C.A., A bi-population PSO with a shake-mechanism for solving constrained numerical optimization, (), 670-676
[5] Coello Coello, C.A., Use of a self-adaptive penalty approach for engineering optimization problems, Computers in industry, 41, 2, 113-127, (2000)
[6] Coello Coello, C.A., Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art, Computer methods in applied mechanics and engineering, 191, 11-12, 1245-1287, (2002) · Zbl 1026.74056
[7] Conover, W., Practical nonparametric statistics, (1999), John Wiley & Sons
[8] Cruz-Cortés, N., Handling constraints in global optimization using artificial immune systems, (), 237-262
[9] Daniel, W., Biostatistics: basic concepts and methodology for the health sciences, (2002), John Wiley & Sons · Zbl 1263.62125
[10] Deb, K., Optimization for engineering design, (1995), Prentice-Hall India
[11] Deb, K., An efficient constraint handling method for genetic algorithms, Computer methods in applied mechanics and engineering, 186, 2-4, 311-338, (2000) · Zbl 1028.90533
[12] Eiben, A.; Smith, J.E., Introduction to evolutionary computing, natural computing series, (2003), Springer-Verlag · Zbl 1028.68022
[13] Eiben, G.; Schut, M., New ways to calibrate evolutionary algorithms, (), 153-177 · Zbl 1211.90303
[14] Gämperle, R.; Muller, S.; Koumoutsakos, P., A parameter study for differential evolution, (), 293-298
[15] Gong, W.; Cai, Z., A multiobjective differential evolution algorithm for constrained optimization, (), 181-188
[16] Hamida, S.B.; Schoenauer, M., ASCHEA: new results using adaptive segregational constraint handling, (), 884-889
[17] He, Q.; Wang, L.; Huang, F.Z., Nonlinear constrained optimization by enhanced co-evolutionary PSO, (), 83-89
[18] Ho, P.Y.; Shimizu, K., Evolutionary constrained optimization using an addition of ranking method and a percentage-based tolerance value adjustment scheme, Information sciences, 177, 14-15, 2985-3004, (2007)
[19] Huang, F.; Wang, L.; He, Q., An effective co-evolutionary differential evolution for constrained optimization, Applied mathematics and computation, 186, 1, 340-356, (2007) · Zbl 1114.65061
[20] Huang, F.Z.; Wang, L.; He, Q., A hybrid differential evolution with double populations for constrained optimization, (), 18-25
[21] Huang, V.L.; Qin, A.K.; Suganthan, P.N., Self-adaptive differential evolution algorithm for constrained real-parameter optimization, (), 324-331
[22] Kukkonen, S.; Lampinen, J., Constrained real-parameter optimization with generalized differential evolution, (), 911-918
[23] Kumar-Singh, H.; Ray, T.; Smith, W., C-PSA: constrained Pareto simulated annealing for constrained multi-objective optimization, Information sciences, 180, 13, 2499-2513, (2010)
[24] Lampinen, J., A constraint handling approach for the differential evolution algorithm, (), 1468-1473
[25] Landa Becerra, R.; Coello Coello, C.A., Cultured differential evolution for constrained optimization, Computer methods in applied mechanics and engineering, 195, 33-36, 4303-4322, (2006) · Zbl 1123.74039
[26] Leguizamón, G.; Coello Coello, C.A., A boundary search based ACO algorithm coupled with stochastic ranking, (), 165-172
[27] Li, L.D.; Li, X.; Yu, X., A multi-objective constraint-handling method with PSO algorithm for constrained engineering optimization problems, (), 1528-1535
[28] J.J. Liang, T. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, C.A. Coello Coello, K. Deb, Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore, December, 2005.
[29] Lin, Y.C.; Hwang, K.S.; Wang, F.S., Hybrid differential evolution with multiplier updating method for nonlinear constrained optimization problems, (), 872-877
[30] Liu, B.; Ma, H.; Zhang, X.; Liu, B.; Zhou, Y., A memetic co-evolutionary differential evolution algorithm for constrained optimization, (), 2996-3002
[31] Liu, H.; Cai, Z.; Wang, Y., A new constrained optimization evolutionary algorithm by using good point set, (), 1247-1254
[32] Liu, J.; Lampinen, J., A fuzzy adaptive differential evolution algorithm, Soft computing, 9, 6, 448-462, (2005) · Zbl 1076.93513
[33] Mallipeddi, R.; Mallipeddi, S.; Suganthan, P., Ensemble strategies with adaptive evolutionary programming, Information sciences, 180, 9, 1571-1581, (2010)
[34] ()
[35] Mezura-Montes, E.; Coello Coello, C.A., Identifying on-line behavior and some sources of difficulty in two competitive approaches for constrained optimization, (), 1477-1484
[36] Mezura-Montes, E.; Coello Coello, C.A., A simple multimembered evolution strategy to solve constrained optimization problems, IEEE transactions on evolutionary computation, 9, 1, 1-17, (2005)
[37] Mezura-Montes, E.; Coello Coello, C.A., Constrained optimization via multiobjective evolutionary algorithms, (), 53-76
[38] Mezura-Montes, E.; Coello Coello, C.A.; Tun-Morales, E.I., Simple feasibility rules and differential evolution for constrained optimization, (), 707-716
[39] Mezura-Montes, E.; Flores-Mendoza, J.I., Improved particle swarm optimization in constrained numerical search spaces, (), 299-332
[40] Mezura-Montes, E.; López-Ramírez, B.C., Comparing bio-inspired algorithms in constrained optimization problems, (), 662-669
[41] E. Mezura-Montes, M.E. Miranda-Varela, R. del Carmen Gómez-Ramón, Additional Results of the Empirical Study on Differential Evolution in Constrained Numerical Optimization, Technical Report TR-EMM-01-2010, LANIA Educational Center, April, 2010. Available at: <http://www.lania.mx/∼emezura/tr-EMM-01-2010.pdf>. · Zbl 1206.90226
[42] Mezura-Montes, E.; Palomeque-Ortiz, A.G., Parameter control in differential evolution for constrained optimization, (), 1375-1382
[43] Mezura-Montes, E.; Velázquez-Reyes, J.; Coello, C.A.C., Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization, (), 225-232
[44] E. Mezura-Montes, J. Velázquez-Reyes, C.A. Coello Coello, Comparing differential evolution models for global optimization, in: 2006 Genetic and Evolutionary Computation Conference (GECCO’2006), vol. 1, pp. 485-492.
[45] Mezura-Montes, E.; Velázquez-Reyes, J.; Coello Coello, C.A., Modified differential evolution for constrained optimization, (), 332-339
[46] Michalewicz, Z.; Schoenauer, M., Evolutionary algorithms for constrained parameter optimization problems, Evolutionary computation, 4, 1, 1-32, (1996)
[47] Muñoz-Zavala, A.E.; Hernández-Aguirre, A.; Villa-Diharce, E.R.; Botello-Rionda, S., PESO+ for constrained optimization, (), 935-942
[48] Oyama, A.; Shimoyama, K.; Fujii, K., New constraint-handling method for multi-objective and multi-constraint evolutionary optimization, Transactions of the Japan society for aeronautical and space sciences, 50, 167, 56-62, (2007)
[49] Oyman, A.I.; Deb, K.; Beyer, H.G., An alternative constraint handling method for evolution strategies, (), 612-619
[50] Price, K.; Storn, R.; Lampinen, J., Differential evolution: A practical approach to global optimization, natural computing series, (2005), Springer-Verlag
[51] Price, K.V.; Rönkkönen, J.I., Comparing the uni-modal scaling performance of global and local selection in a mutation-only differential evolution algorithm, (), 7387-7394
[52] Runarsson, T.P.; Yao, X., Stochastic ranking for constrained evolutionary optimization, IEEE transactions on evolutionary computation, 4, 3, 284-294, (2000)
[53] Smith, A.E.; Coit, D.W., Constraint handling techniques—penalty functions, (), pp. C 5.2:1-C 5.2:6
[54] Takahama, T.; Sakai, S., Constrained optimization by the &z.epsi; constrained differential evolution with gradient-based mutation and feasible elites, (), 308-315
[55] Takahama, T.; Sakai, S., Constrained optimization by &z.epsi; constrained differential evolution with dynamic &z.epsi;-level control, (), 139-154
[56] Takahama, T.; Sakai, T., Solving difficult constrained optimization problems by the &z.epsi; constrained differential evolution with gradient-based mutation, (), 51-72
[57] Tasgetiren, M.F.; Suganthan, P.N., A multi-populated differential evolution algorithm for solving constrained optimization problems, (), 340-354
[58] Tessema, B.; Yen, G.G., A self-adaptive penalty function based algorithm for constrained optimization, (), 950-957
[59] Ullah, A.S.S.M.B.; Sarker, R.; Cornforth, D.; Lokan, C., An agent-based memetic algorithm (AMA) for solving constrained optimization problems, (), 999-1006
[60] Wah, B.W.; Wang, T.; Shang, Y.; Wu, Z., Improving the performance of weighted Lagrange-multiplier methods for nonlinear constrained optimization, Information sciences, 124, 1-4, 241-272, (2000) · Zbl 0961.90112
[61] Wang, Y.; Cai, Z.; Guo, G.; Zhou, Y., Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems, IEEE transactions on systems, man and cybernetics part B - cybernetics, 37, 3, 560-575, (2007)
[62] Wang, Y.; Cai, Z.; Zhou, Y.; Fan, Z., Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique, Structural and multidisciplinary optimization, 37, 4, 395-413, (2009)
[63] Wang, Y.; Cai, Z.; Zhou, Y.; Zeng, W., An adaptive tradeoff model for constrained evolutionary optimization, IEEE transactions on evolutionary computation, 12, 1, 80-92, (2008)
[64] Wang, Y.; Liu, H.; Cai, Z.; Zhou, Y., An orthogonal design based constrained evolutionary optimization algorithm, Engineering optimization, 39, 6, 715-736, (2007)
[65] Wanner, E.F.; Guimaraes, F.G.; Takahashi, R.H.C.; Flemming, P.J., Local search with quadratic approximation in genetic algorithms for expensive optimization problems, (), 677-683
[66] Wolpert, D.H.; Macready, W.G., No free lunch theorems for optimization, IEEE transactions on evolutionary computation, 1, 1, 67-82, (1997)
[67] Xiao, J.; Xu, J.; Shao, Z.; Jiang, C.; Pan, L., A genetic algorithm for solving multi-constrained function optimization problems based on ks function, (), 4497-4501
[68] Yu, Y.; Zhou, Z.H., On the usefulness of infeasible solutions in evolutionary search: a theoretical study, (), 835-840
[69] Zeng, S.; Shi, H.; Li, H.; Chen, G.; Ding, L.; Kang, L., A lower-dimensional-search evolutionary algorithm and its application in constrained optimization problem, (), 1255-1260
[70] Zhang, M.; Luo, W.; Wang, X., Differential evolution with dynamic stochastic selection for constrained optimization, Information sciences, 178, 15, 3043-3074, (2008)
[71] Zhang, Q.; Zeng, S.; Wang, R.; Shi, H.; Chen, G.; Ding, L.; Kang, L., Constrained optimization by the evolutionary algorithm with lower dimensional crossover and gradient-based mutation, (), 273-279
[72] Zhou, Y.; He, J., A runtime analysis of evolutionary algorithms for constrained optimization problems, IEEE transactions on evolutionary computation, 11, 5, 608-619, (2007)
[73] Zielinski, K.; Laur, R., Constrained single-objective optimization using differential evolution, (), 927-934
[74] Zielinski, K.; Laur, R., Stopping criteria for differential evolution in constrained single-objective optimization, (), pp. 111-138
[75] Zielinski, K.; Vudathu, S.P.; Laur, R., Influence of different deviations allowed for equality constraints on particle swarm optimization and differential evolution, (), 249-259
[76] Zielinski, K.; Wang, X.; Laur, R., Comparison of adaptive approaches for differential evolution, (), 641-650
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.