zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Observer-based $H_\infty$ control for systems with repeated scalar nonlinearities and multiple packet losses. (English) Zbl 1206.93035
Summary: This paper is concerned with the $H_\infty$ control problem for a class of systems with repeated scalar nonlinearities and multiple missing measurements. The nonlinear system is described by a discrete-time state equation involving a repeated scalar nonlinearity, which typically appears in recurrent neural networks. The measurement missing phenomenon is assumed to occur, simultaneously, in the communication channels from the sensor to the controller and from the controller to the actuator, where the missing probability for each sensor/actuator is governed by an individual random variable satisfying a certain probabilistic distribution in the interval $[0,1]$. Attention is focused on the analysis and design of an observer-based feedback controller such that the closed-loop control system is stochastically stable and preserves a guaranteed $H_\infty$ performance. Sufficient conditions are obtained for the existence of admissible controllers. It is shown that the controller design problem under consideration is solvable if certain Linear Matrix Inequalities (LMIs) are feasible. Three examples are provided to illustrate the effectiveness of the developed theoretical results.

93E15Stochastic stability
93C55Discrete-time control systems
Full Text: DOI