×

zbMATH — the first resource for mathematics

Primes in tuples. II. (English) Zbl 1207.11097
See the joint review of Parts I [Ann. Math. (2) 170, No. 2, 819–862 (2009)] and II in Zbl 1207.11096.
Part III was already published in 2006 [see Funct. Approximatio, Comment. Math. 35, 79–89 (2006; Zbl 1196.11123)].

MSC:
11N05 Distribution of primes
11N36 Applications of sieve methods
11N13 Primes in congruence classes
PDF BibTeX Cite
Full Text: DOI
References:
[1] Bombieri, E. & Davenport, H., Small differences between prime numbers. Proc. Roy. Soc. Ser. A, 293 (1966), 1–18. · Zbl 0151.04201
[2] Davenport, H., Multiplicative Number Theory. Graduate Texts in Mathematics, 74. Springer, New York, 2000. · Zbl 1002.11001
[3] Elliott, P. D. T. A. & Halberstam, H., A conjecture in prime number theory, in Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pp. 59–72. Academic Press, London, 1970.
[4] Erdos, P., The difference of consecutive primes. Duke Math. J., 6 (1940), 438–441. · JFM 66.0162.04
[5] Gallagher, P. X., On the distribution of primes in short intervals. Mathematika, 23 (1976), 4–9. · Zbl 0346.10024
[6] Goldfeld, D. M. & Schinzel, A., On Siegel’s zero. Ann. Sc. Norm. Super. Pisa Cl. Sci., 2 (1975), 571–583. · Zbl 0327.10041
[7] Goldston, D. A., Pintz, J. & Yıldırım, C. Y., Primes in tuples I. Ann. of Math., 170 (2009), 819–862. · Zbl 1207.11096
[8] Halberstam, H. & Richert, H. E., Sieve Methods. London Math. Soc. Monogr. Ser., 4. Academic Press, London–New York, 1974. · Zbl 0298.10026
[9] Hardy, G. H. & Littlewood, J. E., Some problems of ’Partitio numerorum’; III: On the expression of a number as a sum of primes. Acta Math., 44 (1923), 1–70. · JFM 48.0143.04
[10] Heath-Brown, D. R., Prime twins and Siegel zeros. Proc. Lond. Math. Soc., 47 (1983), 193–224. · Zbl 0517.10044
[11] _____ Almost-prime k-tuples. Mathematika, 44 (1997), 245–266. · Zbl 0886.11052
[12] Ivić, A., The Riemann zeta-function. John Wiley, New York, 1985. · Zbl 0556.10026
[13] Maier, H., Small differences between prime numbers. Michigan Math. J., 35 (1988), 323–344. · Zbl 0671.10037
[14] Montgomery, H. L., Topics in Multiplicative Number Theory. Lecture Notes in Mathematics, 227. Springer, Berlin–Heidelberg, 1971. · Zbl 0216.03501
[15] Pintz, J., Elementary methods in the theory of L-functions. II. On the greatest real zero of a real L-function. Acta Arith., 31 (1976), 273–289. · Zbl 0307.10041
[16] _____ Elementary methods in the theory of L-functions. VIII. Real zeros of real L-functions. Acta Arith., 33 (1977), 89–98. · Zbl 0331.10023
[17] _____ Very large gaps between consecutive primes. J. Number Theory, 63 (1997), 286–301. · Zbl 0870.11056
[18] _____ Approximations to the Goldbach and twin prime problem and gaps between consecutive primes, in Probability and Number Theory (Kanazawa, 2005), Adv. Stud. Pure Math., 49, pp. 323–365. Math. Soc. Japan, Tokyo, 2007. · Zbl 1229.11131
[19] de Polignac, A., Six propositions arithmologiques d’eduites du crible d’Ératosthène. Nouv. Ann. Math., 8 (1849), 423–429.
[20] Titchmarsh, E. C., The Theory of the Riemann Zeta-Function. Oxford University Press, New York, 1986. · Zbl 0601.10026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.