zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The exponential function rational expansion method and exact solutions to nonlinear lattice equations system. (English) Zbl 1207.34097
Summary: We propose an exponential function rational expansion method for solving exact traveling wave solutions to systems of nonlinear differential-difference equations. By this method, we obtain some exact traveling wave solutions to a system of relativistic Toda lattice equations and discuss the significance of these solutions. Finally, we give an open problem.

34K31Lattice functional-differential equations
34A05Methods of solution of ODE
Full Text: DOI
[1] Toda, M.: Theory of nonlinear lattices, (1981) · Zbl 0465.70014
[2] Tsuchida, T.; Ujino, H.; Wadati, M.: Integrable semi-discretization of the coupled modified KdV equations, J. math. Phys. 39, 4785-4813 (1998) · Zbl 0933.35176 · doi:10.1063/1.532537
[3] Tsuchida, T.; Ujino, H.; Wadati, M.: Integrable semi-discretization of the coupled nonlinear Schrödinger equations, J. phys. A: math. Gen. 32, 2239-2261 (1999) · Zbl 0941.35112 · doi:10.1088/0305-4470/32/11/016
[4] Baldwin, D.; Göktas, Ü.; Hereman, W.: Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations, Comput. phys. Commun. 163, 203-222 (2004) · Zbl 1196.68324 · doi:10.1016/j.cpc.2004.07.002
[5] Zhu, Jia-Min: Hyperbolic function method for solving nonlinear differential-different equations, Chin. phys. 14, 1290-1295 (2005)
[6] Yang, Zhonghang; Hou, Y. C.: A generalized coth-function method for exact solution of differential-difference equation, Chaos, solitons and fractals 33, 1642-1651 (2007) · Zbl 1153.35397 · doi:10.1016/j.chaos.2006.03.023
[7] Dai, Chao-Qin; Zhang, Jie-Fang: Traveling wave solutions to the coupled discrete nonlinear Schrödinger equations, Int. J. Mod. phys. B 19, 2129-2143 (2005) · Zbl 1101.81048 · doi:10.1142/S0217979205029778
[8] Cheng-Shi, Liu: Exponential function rational expansion method for nonlinear differential-difference equations, Chaos, solitons and fractals 40, 708-716 (2009) · Zbl 1197.35243 · doi:10.1016/j.chaos.2007.08.018
[9] Cheng-Shi, Liu: Representations and classification of traveling wave solutions to sinh -- Gordon equation, Commoun. theor. Phys. 49, 153-158 (2008)