Zhang, Peng; Liao, Jia-Feng Existence and nonexistence results for classes of singular elliptic problem. (English) Zbl 1207.35168 Abstr. Appl. Anal. 2010, Article ID 435083, 10 p. (2010). Summary: The singular semilinear elliptic problem \(-\Delta u+k(x)u^{-\gamma}= \lambda u^p\) in \(\Omega\), \(u>0\) in \(\Omega\), \(u=0\) on \(\partial\Omega\), is considered, where \(\Omega\) is a bounded domain with smooth boundary in \(\mathbb R^N\), \(k\in C_{\text{loc}}^a(\Omega)\cap C(\overline{\Omega})\), and \(\gamma,p,\lambda\) are three positive constants. Some existence or nonexistence results are obtained for solutions of this problem by the sub-supersolution method. MSC: 35J75 Singular elliptic equations 35J61 Semilinear elliptic equations 35J20 Variational methods for second-order elliptic equations Keywords:singular semilinear ellipitc problem; existence; sub-supersolution method PDFBibTeX XMLCite \textit{P. Zhang} and \textit{J.-F. Liao}, Abstr. Appl. Anal. 2010, Article ID 435083, 10 p. (2010; Zbl 1207.35168) Full Text: DOI EuDML OA License References: [1] A. Callegari and A. Nachman, “Some singular, nonlinear differential equations arising in boundary layer theory,” Journal of Mathematical Analysis and Applications, vol. 64, no. 1, pp. 96-105, 1978. · Zbl 0386.34026 · doi:10.1016/0022-247X(78)90022-7 [2] A. Nachman and A. Callegari, “A nonlinear singular boundary value problem in the theory of pseudoplastic fluids,” SIAM Journal on Applied Mathematics, vol. 38, no. 2, pp. 275-281, 1980. · Zbl 0453.76002 · doi:10.1137/0138024 [3] Y. S. Choi, A. C. Lazer, and P. J. McKenna, “Some remarks on a singular elliptic boundary value problem,” Nonlinear Analysis. Theory, Methods & Applications, vol. 32, no. 3, pp. 305-314, 1998. · Zbl 0940.35089 · doi:10.1016/S0362-546X(97)00492-6 [4] J. I. Diaz, J.-M. Morel, and L. Oswald, “An elliptic equation with singular nonlinearity,” Communications in Partial Differential Equations, vol. 12, no. 12, pp. 1333-1344, 1987. · Zbl 0634.35031 · doi:10.1080/03605308708820531 [5] W. Fulks and J. S. Maybee, “A singular nonlinear elliptic equations,” Osaka Journal of Mathematics, vol. 12, no. 5, pp. 1-19, 1960. · Zbl 0097.30202 [6] C. A. Stuart, “Existence and approximation of solutions of non-linear elliptic equations,” Mathematische Zeitschrift, vol. 147, no. 1, pp. 53-63, 1976. · Zbl 0324.35037 · doi:10.1007/BF01214274 [7] M. M. Coclite and G. Palmieri, “On a singular nonlinear Dirichlet problem,” Communications in Partial Differential Equations, vol. 14, no. 10, pp. 1315-1327, 1989. · Zbl 0692.35047 · doi:10.1080/03605308908820656 [8] M. G. Crandall, P. H. Rabinowitz, and L. Tartar, “On a Dirichlet problem with a singular nonlinearity,” Communications in Partial Differential Equations, vol. 2, no. 2, pp. 193-222, 1977. · Zbl 0362.35031 · doi:10.1080/03605307708820029 [9] A. L. Edelson, “Entire solutions of singular elliptic equations,” Journal of Mathematical Analysis and Applications, vol. 139, no. 2, pp. 523-532, 1989. · Zbl 0679.35003 · doi:10.1016/0022-247X(89)90126-1 [10] A. C. Lazer and P. J. McKenna, “On a singular nonlinear elliptic boundary-value problem,” Proceedings of the American Mathematical Society, vol. 111, no. 3, pp. 721-730, 1991. · Zbl 0727.35057 · doi:10.2307/2048410 [11] M. A. del Pino, “A global estimate for the gradient in a singular elliptic boundary value problem,” Proceedings of the Royal Society of Edinburgh. Section A, vol. 122, no. 3-4, pp. 341-352, 1992. · Zbl 0791.35046 · doi:10.1017/S0308210500021144 [12] M. Ghergu and V. R\uadulescu, “Sublinear singular elliptic problems with two parameters,” Journal of Differential Equations, vol. 195, no. 2, pp. 520-536, 2003. · Zbl 1039.35042 · doi:10.1016/S0022-0396(03)00105-0 [13] J. Shi and M. Yao, “On a singular nonlinear semilinear elliptic problem,” Proceedings of the Royal Society of Edinburgh. Section A, vol. 128, no. 6, pp. 1389-1401, 1998. · Zbl 0919.35044 · doi:10.1017/S0308210500027384 [14] Z. Zhang, “On a Dirichlet problem with a singular nonlinearity,” Journal of Mathematical Analysis and Applications, vol. 194, no. 1, pp. 103-113, 1995. · Zbl 0834.35054 · doi:10.1006/jmaa.1995.1288 [15] S. Cui, “Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems,” Nonlinear Analysis. Theory, Methods & Applications, vol. 41, no. 1-2, pp. 149-176, 2000. · Zbl 0955.35026 · doi:10.1016/S0362-546X(98)00271-5 [16] P.-L. Lions, “On the existence of positive solutions of semilinear elliptic equations,” SIAM Review, vol. 24, no. 4, pp. 441-467, 1982. · Zbl 0511.35033 · doi:10.1137/1024101 [17] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, vol. 224 of Fundamental Principles of Mathematical Sciences, Springer, Berlin, Germany, 2nd edition, 1983. · Zbl 0562.35001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.