zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact solutions to KdV6 equation by using a new approach of the projective Riccati equation method. (English) Zbl 1207.35255
Summary: We study a new integrable KdV6 equation from the point of view of its exact solutions by using an improved computational method. A new approach to the projective Riccati equations method is implemented and used to construct traveling wave solutions for a new integrable system, which is equivalent to KdV6 equation. Periodic and soliton solutions are formally derived. Finally, some conclusions are given.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35B05Oscillation, zeros of solutions, mean value theorems, etc. (PDE)
35C08Soliton solutions of PDE
35A24Methods of ordinary differential equations for PDE
35-04Machine computation, programs (partial differential equations)
WorldCat.org
Full Text: DOI EuDML
References:
[1] A. Karasu-Kalkanlı, A. Karasu, A. Sakovich, S. Sakovich, and R. Turhan, “A new integrable generalization of the Korteweg-de Vries equation,” Journal of Mathematical Physics, vol. 49, no. 7, Article ID 073516, 10 pages, 2008. · Zbl 1152.35473 · doi:10.1063/1.2953474 · arxiv:0708.3247
[2] B. A. Kupershmidt, “KdV6: an integrable system,” Physics Letters. A, vol. 372, no. 15, pp. 2634-2639, 2008. · Zbl 1220.35153 · doi:10.1016/j.physleta.2007.12.019
[3] C. A. Gómez and A. H. Salas, “Exact solutions for a new integrable system (KdV6),” Journal of Mathematical Sciences. Advances and Applications, vol. 1, no. 2, pp. 401-413, 2008. · Zbl 1182.35064
[4] Y. Yao and Y. Zeng, “The bi-Hamiltonian structure and new solutions of KdV6 equation,” Letters in Mathematical Physics, vol. 86, no. 2-3, pp. 193-208, 2008. · Zbl 1179.35298 · doi:10.1007/s11005-008-0281-4
[5] V. K. Menlikov, “Integration of the Korteweg-de Vries equation with a source,” Inverse Problems, vol. 6, no. 2, pp. 233-246, 1990. · Zbl 0712.35088
[6] E. Fan and Y. C. Hon, “Generalized tanh method extended to special types of nonlinear equations,” Zeitschrift für Naturforschung A, vol. 57, no. 8, pp. 692-700, 2002.
[7] C. A. Gómez, “Exact solutions for a new fifth-order integrable system,” Revista Colombiana de Matemáticas, vol. 40, no. 2, pp. 119-125, 2006. · Zbl 1189.35274 · emis:journals/RCM/revistas.art810.html · eudml:227601
[8] C. A. Gómez and A. H. Salas, “Exact solutions for a reaction diffusion equation by using the generalized tanh method,” Scientia et Technica, vol. 13, no. 35, pp. 409-410, 2007.
[9] A.-M. Wazwaz, “The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 1002-1014, 2007. · Zbl 1115.65106 · doi:10.1016/j.amc.2006.07.002
[10] C. A. Gómez, “Special forms of the fifth-order KdV equation with new periodic and soliton solutions,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1066-1077, 2007. · Zbl 1122.65393 · doi:10.1016/j.amc.2006.11.158
[11] C. A. Gómez, “New exact solutions for a generalization of the Korteweg-de Vries equation (KdV6),” Applied Mathematics and Computation, vol. 216, no. 1, pp. 357-360, 2010. · Zbl 1185.35226 · doi:10.1016/j.amc.2010.01.040
[12] C. A. Gómez and A. H. Salas, “The generalized tanh-coth method to special types of the fifth-order KdV equation,” Applied Mathematics and Computation, vol. 203, no. 2, pp. 873-880, 2008. · Zbl 1154.65364 · doi:10.1016/j.amc.2008.05.105
[13] A. H. Salas and C. A. Gómez, “Computing exact solutions for some fifth KdV equations with forcing term,” Applied Mathematics and Computation, vol. 204, no. 1, pp. 257-260, 2008. · Zbl 1160.35526 · doi:10.1016/j.amc.2008.06.033
[14] S. Zhang, “Exp-function method exactly solving the KdV equation with forcing term,” Applied Mathematics and Computation, vol. 197, no. 1, pp. 128-134, 2008. · Zbl 1135.65388 · doi:10.1016/j.amc.2007.07.041
[15] J.-H. He and L.-N. Zhang, “Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method,” Physics Letters. A, vol. 372, no. 7, pp. 1044-1047, 2008. · Zbl 1217.35152 · doi:10.1016/j.physleta.2007.08.059
[16] J.-H. He, “An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering,” International Journal of Modern Physics B, vol. 22, no. 21, pp. 3487-3578, 2008. · Zbl 1149.76607 · doi:10.1142/S0217979208048668
[17] R. Conte and M. Musette, “Link between solitary waves and projective Riccati equations,” Journal of Physics. A. Mathematical and General, vol. 25, no. 21, pp. 5609-5623, 1992. · Zbl 0782.35065 · doi:10.1088/0305-4470/25/21/019
[18] Z. Yan, “The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equations,” MMRC, AMSS, Academis Sinica, vol. 22, pp. 275-284, 2003.
[19] E. Yomba, “The general projective Riccati equations method and exact solutions for a class of nonlinear partial differential equations,” Chinese Journal of Physics, vol. 43, no. 6, pp. 991-1003, 2005.
[20] C. A. Gómez and A. Salas, “Exact solutions for the generalized shallow water wave equation by the general projective Riccati equations method,” Boletín de Matemáticas. Nueva Serie, vol. 13, no. 1, pp. 50-56, 2006. · Zbl 1203.35220
[21] C. A. Gómez and A. Salas, “New exact solutions for the combined sinh-cosh-Gordon equation,” Lecturas Matemáticas, vol. 27, pp. 87-93, 2006.
[22] C. A. Gómez, “New exact solutions of the Mikhailov-Novikov-Wang system,” International Journal of Computer, Mathematical Sciences and Applications, vol. 1, pp. 137-143, 2007.
[23] C. A. Gómez, “New traveling waves solutions to generalized Kaup-Kupershmidt and Ito equations,” Applied Mathematics and Computation, vol. 216, no. 1, pp. 241-250, 2010. · Zbl 1185.35225 · doi:10.1016/j.amc.2010.01.045
[24] Y. Shang, Y. Huang, and W. Yuan, “New exact traveling wave solutions for the Klein-Gordon-Zakharov equations,” Computers & Mathematics with Applications, vol. 56, no. 5, pp. 1441-1450, 2008. · Zbl 1155.35443 · doi:10.1016/j.camwa.2007.10.033
[25] C. A. Gómez and A. H. Salas, “The variational iteration method combined with improved generalized tanh-coth method applied to Sawada-Kotera equation,” International Journal of Nonlinear Sciences and Numerical Simulation. In press. · Zbl 1203.65196
[26] M. A. Noor and S.T. Mohyud-Din, “Variational iteration method for solving higher-order nonlinear boundary value problems using He’s polynomials,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 2, pp. 141-157, 2008. · Zbl 1151.65334
[27] J.-H. He and X.-H. Wu, “Construction of solitary solution and compacton-like solution by variational iteration method,” Chaos, Solitons and Fractals, vol. 29, no. 1, pp. 108-113, 2006. · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[28] S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, “Travelling wave solutions of seventh-order generalized KdV equations using He’s polynomials,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 2, pp. 223-229, 2009. · Zbl 1168.35427
[29] S. T. Mohyud-Din and M. A. Noor, “Homotopy perturbation method for solving partial differential equations,” Zeitschrift für Naturforschung A, vol. 64, no. 3-4, pp. 157-170, 2009. · Zbl 1185.35005 · doi:10.1142/S1793557109000558
[30] H. Mirgolbabaei, D. D. Ganji, and H. Taherian, “Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method,” World Journal of Modelling and Simulation, vol. 5, no. 1, pp. 38-44, 2009.
[31] H. Mirgolbabaei and D. D. Ganji, “Application of homotopy perturbation method to solve combined Korteweg de Vries-Modified Korteweg de Vries equation,” Journal of Applied Sciences, vol. 9, no. 19, pp. 3587-3592, 2009. · doi:10.3923/jas.2009.3587.3592
[32] H. Mirgolbabai, A. Barari, and G. Domiri, “Analytical solition of forced-convective boundary-layer flow over a flat plate,” Archive of Civil and Mechanical Engineering. In press.
[33] S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, “Some relatively new techniques for nonlinear problems,” Mathematical Problems in Engineering, vol. 2008, Article ID 234849, 25 pages, 2009. · Zbl 1184.35280 · doi:10.1155/2009/234849 · eudml:45810
[34] S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, “Travelling wave solutions of seventh-order generalized KdV equations by variational iteration method using Adomian’s polynomials,” International Journal of Modern Physics B, vol. 23, no. 15, pp. 3265-3277, 2009. · Zbl 1168.35427 · doi:10.1142/S0217979209052467
[35] J. H. He, “Some asymptotics methods for strongly nonlinear equation,” International Journal of Modern Physics, vol. 20, no. 10, pp. 1144-1199, 2006. · Zbl 1102.34039
[36] C. A. Gómez and A. H. Salas, “The Cole-Hopf transformation and improved tanh-coth method applied to new integrable system (KdV6),” Applied Mathematics and Computation, vol. 204, no. 2, pp. 957-962, 2008. · Zbl 1157.65457 · doi:10.1016/j.amc.2008.08.006
[37] A.-M. Wazwaz, “The integrable KdV6 equations: multiple soliton solutions and multiple singular soliton solutions,” Applied Mathematics and Computation, vol. 204, no. 2, pp. 963-972, 2008. · Zbl 1154.65368 · doi:10.1016/j.amc.2008.08.007
[38] Y. Zhang, X.-N. Cai, and H.-X. Xu, “A note on “The integrable KdV6 equation: multiple soliton solutions and multiple singular soliton solutions”,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 1-3, 2009. · Zbl 1168.35429 · doi:10.1016/j.amc.2009.03.059
[39] A. H. Salas, “Symbolic computation of solutions for a forced Burgers equation,” Applied Mathematics and Computation, vol. 216, no. 1, pp. 18-26, 2010. · Zbl 1185.35238 · doi:10.1016/j.amc.2009.12.008
[40] A. H. Salas, “Symbolic computation of exact solutions to KdV equation,” Canadian Applied Mathematics Quarterly, vol. 16, no. 4, 2008. · Zbl 1200.35270 · http://www.math.ualberta.ca/ami/CAMQ/table_of_content/vol_16/16_4e.htm