zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetry analysis of an integrable Itô coupled system. (English) Zbl 1207.35263
Summary: We study the invariance analysis, integrability properties and P-property of the Ito coupled nonlinear partial differential equations. We explore several new solutions for the Ito system through the Lie symmetry analysis. Moreover, this work has been devoted to study the integrability aspects of the Ito system through higher order symmetries. We are also investigating the existence of higher order symmetries for the Ito system. Interestingly our investigations reveal a rich variety of particular solutions, which have not been reported in the literature, for this model.

35Q53KdV-like (Korteweg-de Vries) equations
35A30Geometric theory for PDE, characteristics, transformations
37K05Hamiltonian structures, symmetries, variational principles, conservation laws
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
Full Text: DOI
[1] Olver, P. J.: Applications of Lie groups to differential equations, (1986) · Zbl 0588.22001
[2] Bluman, G. W.; Kumei, S.: Symmetries and differential equations, (1989) · Zbl 0698.35001
[3] Stephani, H.: Differential equations: their solutions using symmetries, (1990) · Zbl 0734.76096
[4] Ibrahimov, N. H.: CRC handbook of Lie group analysis of differential equations, (1996) · Zbl 0864.35003
[5] Clarkson, P. A.: Chaos solitons fractals, Chaos solitons fractals 5, 2261 (1995)
[6] Ablowitz, M. J.; Segur, A. Ramani: J. math. Phys., J. math. Phys. 21, 715 (1983)
[7] Lakshmanan, M.; Sahadevan, R.: Phys. rep., Phys. rep. 224, 1 (1993)
[8] Ramani, A.; Grammaticos, B.; Bountis, T.: Phys. rep., Phys. rep. 180, l59 (1989)
[9] Head, A.: Comput. phys. Comm., Comput. phys. Comm. 77, 241 (1993)
[10] Hone, A. N. W.: Painlevé tests, singularity structure, and integrability, Nonlinear sci., 1-34 (2005)
[11] Grammaticos, B.; Dorizzi, B.: Math. comput. Simulation, Math. comput. Simulation 37, No. 4--5, 341-352 (1994)
[12] Grammaticos, B.; Ramani, A.; Tamizhmani, K. M.; Tamizhmani, T.; Carstea, A. S.: J. phys. A, J. phys. A 40, No. 30 (2007) · Zbl 1074.39023
[13] Jimbo, M.; Krudkal, M. D.; Miwa, T.: Phys. lett., Phys. lett. 92A, 59-60 (1982)
[14] Krudkal, M. D.; Clarkson, P. A.: Stud. appl. Math., Stud. appl. Math. 86, No. 87, 165 (1992)
[15] Olver, P. J.; Sokolov, V. V.: Comm. maths. Phys., Comm. maths. Phys. 193, 245 (1998)