Interpolation and best simultaneous approximation. (English) Zbl 1207.41009

The paper deals with best simultaneous approximation (b.s.a.) to \(k\) continuous functions on the interval \([a,b]\) from a finite subspace of \(C[a,b]\). The authors establish the limit of the b.s.a., which is important to provides qualitative and approximation analytic information concerning the the b.s.a. on small regions, a problem which is difficult to solve from a strictly numerical treatment. The main results of the paper are contained in Section 2 (Interpolating of best simultaneous approximation), where the properties of the b.s.a. function are established. Applying these results, in Section 3, the b.s.a. in small regions is studied.
Reviewer’s remark: The paper contains important generalizations of the results in [A. S. B. Holland and B. N. Sahney, Theory Approx., Proc. Conf. Calgary 1975, 332–337 (1976; Zbl 0357.41016); H. H. Cuenya, F. E. Levis and M. D. Lorenzo, Numer. Funct. Anal. Optim. 30, No. 3–4, 245–258 (2009; Zbl 1179.41017); H. H. Cuenya and C. N. Rodriguez, Note Mat. 28, No. 2, 153–162 (2008; Zbl 1210.41004)] from the References.


41A28 Simultaneous approximation
Full Text: DOI


[1] Chui, C. K.; Shisha, O.; Smith, P. W., Best local approximation, J. Approx. Theory, 15, 371-381 (1975) · Zbl 0314.41016
[2] Conte, S. D.; De Boor, C., Elementary Numerical Analysis (1972), McGraw-Hill: McGraw-Hill USA · Zbl 0257.65002
[3] Cuenya, H. H.; Levis, F. E., Pólya-type polynomial inequalities in \(L^p\) spaces and best local approximation, Numer. Funct. Anal. Optim., 26, 7-8, 813-827 (2005) · Zbl 1092.41006
[4] Cuenya, H. H.; Levis, F. E.; Lorenzo, M. D., Best simultaneous approximation on small regions, Numer. Funct. Anal. Optim., 30, 3-4, 245-258 (2009) · Zbl 1179.41017
[5] Cuenya, H. H.; Rodriguez, C. N., Best simultaneous \(L^p\) approximation in the “sum” norm, Note Mat., 28, 2, 153-162 (2008), (in press) · Zbl 1210.41004
[6] Dumham, C. B., Best mean rational approximation, Computing, 9, 87-93 (1972) · Zbl 0243.41015
[7] Griesel, M. A., A generalized Pólya algorithm, J. Approx. Theory, 12, 160-164 (1974) · Zbl 0293.65008
[8] A.S.V. Holland, B.N. Sahney, Some remarks on best simultaneous approximation, in: Theory of Approximation with Applications, Proc. Conf. Calgary, 1975, 1976, pp. 332-337.; A.S.V. Holland, B.N. Sahney, Some remarks on best simultaneous approximation, in: Theory of Approximation with Applications, Proc. Conf. Calgary, 1975, 1976, pp. 332-337. · Zbl 0357.41016
[9] Karakus, Y., On simultaneous approximation, Note Mat., 21, 71-76 (2002) · Zbl 1115.41016
[10] Kranosselskii, M. A.; Rutikii, Ya. B., (Convex Functions and Orlicz Spaces (1961), P. Noordhoff, Groningen: P. Noordhoff, Groningen The Netherlands) · Zbl 0095.09103
[11] Li, C.; Watson, G. A., On best simultaneous approximation, J. Approx. Theory, 91, 332-348 (1997) · Zbl 0892.41012
[12] Pinkus, A., (On \(L^1\)-Approximation. On \(L^1\)-Approximation, Cambridge Tracts in Mathematics, vol. 93 (1989), Cambridge University: Cambridge University England) · Zbl 0679.41022
[13] Pinkus, A., Uniqueness in vector-value approximation, J. Approx. Theory, 73, 17, 17-92 (1993) · Zbl 0780.41018
[14] Stoer, J.; Bulirsch, R., (Introduction to Numerical Analysis. Introduction to Numerical Analysis, Text in Applied Mathematics, vol. 12 (2002), Springer: Springer USA) · Zbl 1004.65001
[15] Tanimoto, S., On best simultaneous approximation, Math. Japonica, 48, 2, 273-279 (1998) · Zbl 0924.41016
[16] Wolfe, J. M., Interpolation and best \(L_p\) local approximation, J. Approx. Theory, 32, 96-102 (1981) · Zbl 0495.41003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.