×

Optimal designs for discriminating between dose-response models in toxicology studies. (English) Zbl 1207.62154

Summary: We consider design issues for toxicology studies when we have a continuous response and the true mean response is only known to be a member of a class of nested models. This class of nonlinear models was proposed by toxicologists who were concerned only with estimation problems. We develop robust and efficient designs for model discrimination and for estimating parameters in the selected model at the same time. In particular, we propose designs that maximize the minimum of \(D\)- or \(D_{1}\)-efficiencies over all models in the given class. We show that our optimal designs are efficient for determining an appropriate model from the postulated class, quite efficient for estimating model parameters in the identified model and also robust with respect to model misspecification. To facilitate the use of optimal design ideas in practice, we have also constructed a website that freely enables practitioners to generate a variety of optimal designs for a range of models and also enables them to evaluate the efficiency of any design.

MSC:

62K05 Optimal statistical designs
62P10 Applications of statistics to biology and medical sciences; meta analysis
62J02 General nonlinear regression
62K25 Robust parameter designs

References:

[1] Atkinson, A.C., Donev, A.N. and Tobias, R.D. (2007). Optimum Experimental Designs . Oxford: Oxford Univ. Press. · Zbl 1183.62129
[2] Atkinson, A.C. and Fedorov, V.V. (1975). Optimal design: Experiments for discriminating between several models. Biometrika 62 289-303. · Zbl 0321.62085
[3] Box, G.E.P. and Hill, W.J. (1967). Discrimination among mechanistic models. Technometrics 9 57-71. · doi:10.2307/1266318
[4] Chernoff, H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Statist. 24 586-602. · Zbl 0053.10504 · doi:10.1214/aoms/1177728915
[5] Dette, H. (1990). A generalization of D - and D 1 -optimal designs in polynomial regression. Ann. Statist. 23 1784-1804. · Zbl 0714.62068 · doi:10.1214/aos/1176347878
[6] Dette, H. (1994). Discrimination designs for polynomial regression on a compact interval. Ann. Statist. 22 890-904. · Zbl 0806.62059 · doi:10.1214/aos/1176325501
[7] Dette, H. (1995). Optimal designs for identifying the degree of a polynomial regression. Ann. Statist. 23 1248-1266. · Zbl 0847.62064 · doi:10.1214/aos/1176324708
[8] Dette, H., Melas, V.B. and Wong, W.K. (2005). Optimal design for goodness-of-fit of the J. Amer. Statist. Assoc. 100 1370-1381. · Zbl 1117.62316 · doi:10.1198/016214505000000600
[9] Dette, H. and Roeder, I. (1997). Optimal discrimination designs for multi-factor experiments. Ann. Statist. 25 1161-1175. · Zbl 0888.62077 · doi:10.1214/aos/1069362742
[10] Dette, H. and Haller, G. (1998). Optimal discriminating designs for Fourier regression. Ann. Statist. 26 1496-1521. · Zbl 0930.62075 · doi:10.1214/aos/1024691251
[11] Dette, H. and Titoff, S. (2009). Optimal discrimination designs. Ann. Statist. 37 2056-2082. · Zbl 1168.62066 · doi:10.1214/08-AOS635
[12] Hill, W.J., Hunter, W.G. and Wichern, W.D. (1968). A joint design criterion for the dual problem of model discrimination and parameter estimation. Technometrics 10 145-160. · doi:10.2307/1266231
[13] Jennrich, R.J. (1969). Asymptotic properties of non-linear least squares estimators. Ann. Math. Statist. 40 633-643. · Zbl 0193.47201 · doi:10.1214/aoms/1177697731
[14] Karlin, S. and Studden, W. (1966). Tchebysheff Systems: With Application in Analysis and Statistics . New York: Wiley. · Zbl 0153.38902
[15] Kiefer, J.C. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849-879. · Zbl 0291.62093 · doi:10.1214/aos/1176342810
[16] Lopez-Fidalgo, J., Tommasi, C. and Trandafir, P.C. (2007). An optimal experimental design criterion for discriminating between non-normal models. J. Roy. Statist. Soc. B 69 1-12. · Zbl 1123.62056 · doi:10.1111/j.1467-9868.2007.00586.x
[17] Lopez-Fidalgo, J., Tommasi, C. and Trandafir, P.C. (2008). Optimal designs for discriminating between some extensions of the Michaelis-Menten model. J. Statist. Plann. Inference 138 3797-3804. · Zbl 1146.62057 · doi:10.1016/j.jspi.2008.01.014
[18] Moerbeek, M., Piersma, A.H. and Slob, W. (2004). A comparison of three methods for calculating confidence intervals for the benchmark dose. Risk Anal. 24 31-40.
[19] Müller, C.H. (1995). Maximin efficient designs for estimating non-linear aspects in linear models. J. Statist. Plann. Inference 44 117-132. · Zbl 0812.62081 · doi:10.1016/0378-3758(94)00042-T
[20] Pukelsheim, F. (1993). Optimal Design of Experiments . New York: Wiley. · Zbl 0834.62068
[21] Pukelsheim, F. and Torsney, B. (1991). Optimal weights for experimental designs on linearly independent support points. Ann. Statist. 19 1614-1625. · Zbl 0729.62063 · doi:10.1214/aos/1176348265
[22] Slob, W. (2002). Dose-response modeling of continuous endpoints. Toxicol. Sci. 66 298-312.
[23] Piersma, A.H., Verhoef, A., Sweep, C.G.J., de Jong, W.H. and van Loveren, H. (2002). Developmental toxicity but no immunotoxicity in the rat after prenatal exposure to diethylstilbestrol. Toxicology 174 173-181.
[24] Slob, W. and Pieters, M.N. (1998). A probabilistic approach for deriving acceptable human intake limits and human health risks from toxicological studies: General framework. Risk Anal. 18 787-798.
[25] van der Vaart, A.W. (1998). Asymptotic Statistics . Cambridge: Cambridge Univ. Press. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.