×

Weak convergence of the function-indexed integrated periodogram for infinite variance processes. (English) Zbl 1207.62173

Summary: We study the weak convergence of the integrated periodogram indexed by classes of functions for linear processes with symmetric \(\alpha \)-stable innovations. Under suitable summability conditions on the series of the Fourier coefficients of the index functions, we show that the weak limits constitute \(\alpha \)-stable processes which have representations as infinite Fourier series with i.i.d. \(\alpha \)-stable coefficients. The cases \(\alpha \in (0, 1)\) and \(\alpha \in [1, 2)\) are dealt with by rather different methods and under different assumptions on the classes of functions. For example, in contrast to the case \(\alpha \in (0, 1)\), entropy conditions are needed for \(\alpha \in [1, 2)\) to ensure the tightness of the sequence of integrated periodograms indexed by functions. The results of this paper are of additional interest since they provide limit results for infinite mean random quadratic forms with particular Toeplitz coefficient matrices.

MSC:

62M15 Inference from stochastic processes and spectral analysis
60F05 Central limit and other weak theorems
62G30 Order statistics; empirical distribution functions

References:

[1] Adler, R.J., Feldman, R.E. and Taqqu, M.S. (eds.) (1998). A Practical Guide to Heavy Tails . Boston: Birkhäuser. · Zbl 0901.00010
[2] Bartlett, M.S. (1954). Problemes de l’analyse spectrale des séries temporelles stationnaires. Publ. Inst. Statist. Uni. Paris III-3 119-134. · Zbl 0058.35704
[3] Billingsley, P. (1968). Convergence of Probability Measures . New York: Wiley. · Zbl 0172.21201
[4] Brockwell, P. and Davis, R. (1991). Time Series: Theory and Methods , 2nd ed. New York: Springer. · Zbl 0709.62080
[5] Can, S.U., Mikosch, T. and Samorodnitsky, G. (2009). Weak convergence of the function-indexed integrated periodogram for infinite variuance processes. Extended technical report. Available at . · Zbl 1207.62173 · doi:10.3150/10-BEJ253
[6] Crovella, M. and Bestavros, A. (1996). Self-similarity in world wide web traffic: Evidence and possible causes. In Proceedings of the 1996 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems 24 160-169.
[7] Crovella, M., Bestavros, A. and Taqqu, M.S. (1996). Heavy-tailed probability distributions in the world wide web. · Zbl 0945.62130
[8] Dahlhaus, R. (1988). Empirical spectral processes and their applications to time series analysis. Stochastic Process. Appl. 30 69-83. · Zbl 0655.60033 · doi:10.1016/0304-4149(88)90076-2
[9] Dahlhaus, R. and Polonik, W. (2002). Empirical processes and nonparametric maximum likelihood estimation for time series. In Empirical Process Techniques for Dependent Data (H.G. Dehling, T. Mikosch and M. Sørensen, eds.) 275-298. Boston: Birkhäuser. · Zbl 1022.62091
[10] Davis, R.A. and Mikosch, T. (2009). Extreme value theory for GARCH processes. In The Handbook of Financial Time Series (T.G. Andersen, R.A. Davis, J.-P. Kreiss and T. Mikosch, eds.) 187-200. Heidelberg: Springer. · Zbl 1178.62094
[11] Davis, R.A. and Mikosch, T. (2009). Extremes of stochastic volatility models. In The Handbook of Financial Time Series (T.G. Andersen, R.A. Davis, J.-P. Kreiss and T. Mikosch, eds.) 355-364. Heidelberg: Springer. · Zbl 1178.62112
[12] Davis, R.A. and Resnick, S.I. (1986). Limit theory for the sample covariance and correlation functions of moving averages. Ann. Statist. 14 533-558. · Zbl 0605.62092 · doi:10.1214/aos/1176349937
[13] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Finance and Insurance . Berlin: Springer. · Zbl 0873.62116
[14] Faÿ, G., Gonzalez-Arevalo, B., Mikosch, T. and Samorodnitsky, G. (2006). Modeling teletraffic arrivals by a Poisson cluster process. Qesta 54 121-140. · Zbl 1119.60075 · doi:10.1007/s11134-006-9348-z
[15] Feller, W. (1971). An Introduction to Probability Theory and Its Applications 2 , 2nd ed. New York: Wiley. · Zbl 0219.60003
[16] Grenander, U. and Rosenblatt, M. (1984). Statistical Analysis of Stationary Time Series , 2nd ed. New York: Chelsea. · Zbl 0575.62080
[17] Kagan, Y.Y. (1997). Earthquake size distribution and earthquake insurance. Comm. Statist. Stochastic Models 13 775-797. · Zbl 1127.62419 · doi:10.1080/15326349708807451
[18] Kokoszka, P. and Mikosch, T. (1997). The integrated periodogram for long-memory processes with finite or infinite variance. Stochastic Process. Appl. 66 55-78. · Zbl 0885.62108 · doi:10.1016/S0304-4149(96)00124-X
[19] Kokoszka, P. and Taqqu, M.S. (1996). Parameter estimation for infinite variance fractional ARIMA. Ann. Statist. 24 1880-1913. · Zbl 0896.62092 · doi:10.1214/aos/1069362302
[20] Klüppelberg, C. and Mikosch, T. (1996). The integrated periodogram for stable processes. Ann. Statist. 24 1855-1879. · Zbl 0898.62116 · doi:10.1214/aos/1069362301
[21] Klüppelberg, C. and Mikosch, T. (1996). Self-normalized and randomly centred spectral estimates. In Proceedings of the Athens International Conference on Applied Probability and Time Series, vol. 2: Time Series (C.C. Heyde, Yu.V. Prokhorov, R. Pyke and S.T. Rachev, eds.) 259-271. Berlin: Springer.
[22] Kwapień, S. and Woyczyński, W.A. (1992). Random Series and Stochastic Integrals: Single and Multiple . Basel: Birkhäuser. · Zbl 0751.60035
[23] Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes . Berlin: Springer. · Zbl 0748.60004
[24] Leland, W.E., Willinger, W., Taqqu, M.S. and Wilson, D.V. (1993). On the self-similar nature of Ethernet traffic. Computer Communications Review 23 183-193.
[25] Mikosch, T. (1998). Periodogram estimates from heavy-tailed data. In A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy-Tailed Distributions (R.A. Adler, R. Feldman and M.S. Taqqu, eds.) 241-258. Boston: Birkhäuser. · Zbl 0922.62090
[26] Mikosch, T. (2003). Modelling dependence and tails of financial time series. In Extreme Values in Finance, Telecommunications and the Environment (B. Finkenstädt and H. Rootzén, eds.) 185-286. London: Chapman & Hall.
[27] Mikosch, T., Gadrich, T., Klüppelberg, C. and Adler, R.J. (1995). Parameter estimation for ARMA models with infinite variance innovations. Ann. Statist. 23 305-326. · Zbl 0822.62076 · doi:10.1214/aos/1176324469
[28] Mikosch, T. and Norvaiša, R. (1997). Uniform convergence of the empirical spectral distribution function. Stochastic Process. Appl. 70 85-114. · Zbl 0913.60032 · doi:10.1016/S0304-4149(97)00053-7
[29] Mikosch, T., Resnick, S. and Samorodnitsky, G. (2000). The maximum of the periodogram for a heavy-tailed sequence. Ann. Appl. Probab. 28 885-908. · Zbl 1044.62097 · doi:10.1214/aop/1019160264
[30] Petrov, V.V. (1995). Limit Theorems of Probability Theory . Oxford: Oxford Univ. Press. · Zbl 0826.60001
[31] Pollard, D. (1984). Convergence of Stochastic Processes . Berlin: Springer. · Zbl 0544.60045
[32] Priestley, M. (1981). Spectral Analysis and Time Series , I and II . New York: Academic Press. · Zbl 0537.62075
[33] Resnick, S.I. (2006). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling . New York: Springer. · Zbl 1152.62029 · doi:10.1007/978-0-387-45024-7
[34] Rosiński, J. and Woyczyński, W.A. (1987). Multilinear forms in Pareto-like random variables and product random measures. Colloq. Math. 51 303-313. · Zbl 0652.20043
[35] Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes . New York: Chapman & Hall. · Zbl 0925.60027
[36] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes . New York: Springer. · Zbl 0655.60033 · doi:10.1016/0304-4149(88)90076-2
[37] Whittle, P. (1951). Hypothesis Testing in Time Series Analysis . Uppsala: Almqvist & Wicksel. · Zbl 0045.41301
[38] Willinger, W., Taqqu, M.S., Sherman, R. and Wilson, D. (1995). Self-similarity through high variability: Statistical analysis of ethernet lan traffic at the source level. Proceedings of the ACM/SIGCOMM’95, Cambridge, MA. Computer Communications Review 25 100-113.
[39] Zygmund, A. (2002). Trigonometric Series , I and II , 3rd ed. Cambridge, UK: Cambridge Univ. Press. · Zbl 0367.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.