zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetries of the Julia sets of Newton’s method for multiple root. (English) Zbl 1207.65049
The symmetries of the Julia sets of Newton’s method for multiple roots are investigated. The paper consists of two sections. The first section is an introduction where the related works are disscussed and the main results are formulated. In the second section the author proves some auxiliary lemmas and the main theorems. It is shown that the group of symmetries of the Julia set of a polynomial is a subgroup of that of the corresponding standard, multiple and relaxed Newton methods when the nonlinear polynomial is in normal form and the Julia set has a finite group of symmetries. A necessary and sufficient condition for Julia sets of standard, multiple and relaxed Newton methods to be a horizontal line is obtained.

65H04Roots of polynomial equations (numerical methods)
12Y05Computational aspects of field theory and polynomials
Full Text: DOI
[1] Beardon, A. F.: Iteration of rational functions, (1991) · Zbl 0742.30002
[2] Milnor, J.: Dynamics in one complex variable, (1990) · Zbl 1281.37001
[3] Carleson, L.; Gamelin, T.: Complex dynamics, (1993) · Zbl 0782.30022
[4] Baker, I. N.; Eremenko, A.: A problem on Julia sets, Ann. sci. Fenn. 12, 229-236 (1987) · Zbl 0606.30030
[5] Beardon, A. F.: Symmetries of Julia sets, Bull. London math. Soc. 22, 575-582 (1990) · Zbl 0694.30023 · doi:10.1112/blms/22.6.576
[6] Levin, G.: Symmetries on a Julia set, Adv. sov. Math. 3, 131-141 (1991) · Zbl 0816.30021
[7] Boyd, D.: Translation invariant Julia sets, Proc. amer. Math. soc. 128, 803-812 (2000) · Zbl 0947.30016 · doi:10.1090/S0002-9939-99-05042-X
[8] Wang, X.; Liu, W.: The Julia set of Newton’s method for multiple root, Appl. math. Comput. 172, No. 1 (2006) · Zbl 1090.65057 · doi:10.1016/j.amc.2005.01.147
[9] Wang, X.; Yu, X.: Julia sets for the standard Newton’s method, halley’s method, and Schröder’s method for multiple root, Appl. math. Comput. 189, No. 2 (2007) · Zbl 1122.65348 · doi:10.1016/j.amc.2006.12.002
[10] Wang, X.; Wang, T.: Julia sets of generalized Newton’s method, Fractals 15, No. 4, 323-336 (2007) · Zbl 1142.37036 · doi:10.1142/S0218348X07003733
[11] Wang, X.; Song, W.: Julia set of the Newton’s method for solving some complex exponential equation, Int. J. Image graphics 9, No. 2, 153-169 (2009)
[12] Wang, X.; Yu, X.: Julia set of the Newton transformation for solving some complex exponential equation, Fractals 17, No. 2, 197-204 (2009) · Zbl 1175.37051 · doi:10.1142/S0218348X09004430