Wang, Qi; Zhu, Qingyong; Liu, Mingzhu Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type. (English) Zbl 1207.65103 J. Comput. Appl. Math. 235, No. 5, 1542-1552 (2011). The authors study a differential equation with alternately argument of the form\[ x'(t) = a x(t) + b x( [t+1/2]), \quad t>0 \]\[ x (0) = x_{0}, \]where \( a,b,x_{0}\) are real constants and [.] denotes the greatest integer function. Using the weighted difference method to solve this problem, conditions of stability and oscillations (for analytical and numerical solutions ) are presented in dependence of coefficients \(a , b \). Reviewer: Ivan Secrieru (Chişinău) Cited in 20 Documents MSC: 65L20 Stability and convergence of numerical methods for ordinary differential equations 34K11 Oscillation theory of functional-differential equations 34K20 Stability theory of functional-differential equations 34K28 Numerical approximation of solutions of functional-differential equations (MSC2010) 65L03 Numerical methods for functional-differential equations 65L05 Numerical methods for initial value problems involving ordinary differential equations 65L07 Numerical investigation of stability of solutions to ordinary differential equations Keywords:retarded differential equation; weighted difference method; asymptotic stability; oscillations; \(\theta\)-methods; advanced differential equation PDF BibTeX XML Cite \textit{Q. Wang} et al., J. Comput. Appl. Math. 235, No. 5, 1542--1552 (2011; Zbl 1207.65103) Full Text: DOI References: [1] Wiener, J., Differential equations with piecewise constant delays, (Lakshmikantham, V., Trends in the Theory and Practice of Nonlinear Differential Equations (1983), Marcel Dekker: Marcel Dekker New York), 547-552 [2] Shah, S. M.; Wiener, J., Advanced differential equations with piecewise constant argument deviations, Int. J. Math. Math. Sci., 6, 671-703 (1983) · Zbl 0534.34067 [3] Cooke, K. L.; Wiener, J., Retarded differential equations with piecewise constant delays, J. Math. Anal. Appl., 99, 265-297 (1984) · Zbl 0557.34059 [4] Busenberg, S.; Cooke, K., (Vertically Transmitted Diseases, Models and Dynamics. Vertically Transmitted Diseases, Models and Dynamics, Biomathematics, vol. 23 (1993), Springer: Springer Berlin) · Zbl 0837.92021 [5] Küpper, T.; Yuang, R., On quasi-periodic solutions of differential equations with piecewise constant argument, J. Math. Anal. Appl., 267, 173-193 (2002) · Zbl 1008.34063 [6] Akhmet, M. U.; Büyükadal, C., Differential equations with state-dependent piecewise constant argument, Nonlinear Anal., 72, 4200-4210 (2010) · Zbl 1195.34103 [7] Muroya, Y., New contractivity condition in a population model with piecewise constant arguments, J. Math. Anal. Appl., 346, 65-81 (2008) · Zbl 1161.34048 [8] Bainov, D.; Kostadinov, T.; Petrov, V., Oscillatory and asymptotic properties of nonlinear first order neutral differential equations with piecewise constant argument, J. Math. Anal. Appl., 194, 612-639 (1995) · Zbl 0842.34070 [9] Hong, J.; Obaya, R.; Sanz, A., Almost periodic type solutions of differential equations with piecewise constant argument, Nonlinear Anal., 45, 661-668 (2001) · Zbl 0996.34062 [10] Wiener, J.; Cooke, K. L., Oscillations in systems of differential equations with piecewise constant argument, J. Math. Anal. Appl., 137, 221-239 (1989) · Zbl 0728.34077 [11] Wang, G. Q., Periodic solutions of a neutral differential equation with piecewise constant arguments, J. Math. Anal. Appl., 326, 736-747 (2007) · Zbl 1113.34053 [12] Akhmet, M. U., Stability of differential equations with piecewise constant arguments of generalized type, Nonlinear Anal., 68, 794-803 (2008) · Zbl 1173.34042 [13] Wiener, J., Generalized Solutions of Functional Differential Equations (1993), World Scientific: World Scientific Singapore · Zbl 0874.34054 [14] Aftabizadeh, A. R.; Wiener, J.; Xu, J. M., Oscillatory and periodic solutions of delay differential equations with piecewise constant argument, Proc. Amer. Math. Soc., 99, 673-679 (1987) · Zbl 0631.34078 [15] Cooke, K. L.; Wiener, J., An equation alternately of retarded and advanced type, Proc. Amer. Math. Soc., 99, 726-732 (1987) · Zbl 0628.34074 [16] Seifert, G., Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence, J. Differential Equations, 164, 451-458 (2000) · Zbl 1009.34064 [17] Yang, P.; Liu, Y.; Ge, W., Green’s function for second order differential equations with piecewise constant argument, Nonlinear Anal., 64, 1812-1830 (2006) · Zbl 1111.34048 [18] Akhmet, M. U., Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear Anal., 66, 367-383 (2007) · Zbl 1122.34054 [19] Shen, J. H.; Stavroulakis, I. P., Oscillatory and nonoscillatory delay equations with piecewise constant argument, J. Math. Anal. Appl., 248, 385-401 (2000) · Zbl 0966.34063 [20] Liu, M. Z.; Song, M. H.; Yang, Z. W., Stability of Runge-Kutta methods in the numerical solution of equation \(u^\prime(t) = a u(t) + a_0 u([t])\), J. Comput. Appl. Math., 166, 361-370 (2004) · Zbl 1052.65070 [21] Song, M. H.; Yang, Z. W.; Liu, M. Z., Stability of \(\theta \)-methods for advanced differential equations with piecewise continuous arguments, Comput. Math. Appl., 49, 1295-1301 (2005) · Zbl 1082.65078 [22] Lv, W. J.; Yang, Z. W.; Liu, M. Z., Stability of Runge-Kutta methods for the alternately advanced and retarded differential equations with piecewise continuous arguments, Comput. Math. Appl., 54, 326-335 (2007) · Zbl 1140.65057 [23] Yang, Z. W.; Liu, M. Z.; Nieto, J. J., Runge-Kutta methods for first-order periodic boundary value differential equations with piecewise constant arguments, J. Comput. Appl. Math., 233, 990-1004 (2009) · Zbl 1180.65094 [24] Liu, M. Z.; Gao, J. F.; Yang, Z. W., Oscillation analysis of numerical solution in the \(\theta \)-methods for equation \(x^\prime(t) + a x(t) + a_1 x([t - 1]) = 0\), Appl. Math. Comput., 186, 566-578 (2007) · Zbl 1118.65080 [25] Liu, M. Z.; Gao, J. F.; Yang, Z. W., Preservation of oscillations of the Runge-Kutta method for equation \(x^\prime(t) + a x(t) + a_1 x([t - 1]) = 0\), Comput. Math. Appl., 58, 1113-1125 (2009) · Zbl 1189.65143 [26] Aftabizadeh, A. R.; Wiener, J., Oscillatory and periodic solutions of an equation alternately of retarded and advanced type, Appl. Anal., 23, 219-231 (1986) · Zbl 0598.34059 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.