×

Modeling of nonlinear boundary value problems in enzyme-catalyzed reaction diffusion processes. (English) Zbl 1207.92016

Summary: A mathematical model of steady state mono-layer potentiometric biosensors is developed. The model is based on non stationary diffusion equations containing a nonlinear term related to Michaelis-Menten kinetics of the enzymatic reaction. This paper presents a complex numerical method [J. H. He’s variational iteration method, Methods Appl. Mech. Eng. 167, 57ff (1998)] to solve the nonlinear differential equations that describe the diffusion coupled with a Michaelis-Menten kinetics law. Approximate analytical expressions for substrate concentration and corresponding current response have been derived for all values of the saturation parameter \(\alpha \) and the reaction diffusion parameter \(K\) using the variational iteration method. These results are compared with available limiting case results and are found to be in good agreement. The obtained results are valid for the whole solution domain.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
65N99 Numerical methods for partial differential equations, boundary value problems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Goldman R., Kedem O., Katchalski E.: Biochem 7, 4518 (1968)
[2] Sundaram P.V. , Tweedale A., Laidler K.J.: Can. J. Chem. 48, 1498 (1970)
[3] Kasche V., Lundquist H., Bergman R., Axen R.: Biochem. Biophys. Res. commun. 45, 615 (1971)
[4] Blaedel W.J., Kissel T.R., Boguslaski R.C.: Anal. Chem. 44(12), 2030 (1972)
[5] Gough D.A., Lucisano J.Y., Tse P.H.S.: Am. Chem. Soc. 14, 351 (1985)
[6] Jobst G., Moser I., Urban G.: Biosens. Bioelectron. 11(1/2), 111 (1996)
[7] Bacha S., Bergel A., Comtat M.: Anal. Chem. 67, 1669 (1995)
[8] Bacha S., Montagne M., Berget A.: AICHE J. 42, 2967 (1996)
[9] Baronas R., Ivanauskas F., Kulys J., Sapagovas M.: Nonlinear Anal. Model. Control 7, 93 (2002) · Zbl 1047.68639
[10] Baronas R., Ivanauskas F., Kulys J., Sapagovas M.: Nonlinear Anal. Model. Control 8, 3 (2003)
[11] Baronas R., Ivanauskas F., Kulys J., Sapagovas M.: Sensors 3, 248 (2003)
[12] Britz D.: Digital Simulation in Eletrochemistry, 2nd edn. Springer, Berlin (1988)
[13] Baronas R., Ivanauskas F., Kulys J.: J. Math. Chem. 32, 225 (2002) · Zbl 1011.92502
[14] Bartlett P.N., Pratt K.F.E.: J. Electroanal. Chem. 397, 61 (1995)
[15] Carr P.W.: Anal. Chem. 49, 799 (1977)
[16] Brady J.E., Carr P.W.: Anal. Chem. 52, 977 (1980)
[17] Tran-Minh C., Broun G.: Anal. Chem. 47, 1359 (1975)
[18] Rahamathunissa G., Rajendran L.: J. Math. Chem. 44, 849 (2008) · Zbl 1217.65233
[19] Lyons M.E.G., Bannon T., Hinds G., Rebouillat S.: Analyst 123, 1947 (1998)
[20] He J.H.: Comput. Methods Appl. Mech. Eng. 167(1–2), 57 (1998) · Zbl 0942.76077
[21] He J.H.: Comm. Nonlinear Sci. Numer. Simul. 2(4), 230 (1997)
[22] Momani S., Abuasad S., Odibat Z.: Appl. Math. Comput. 183, 1351 (2006) · Zbl 1110.65068
[23] Lyons M.E.G., Greer J.C., Fitzgerald C.A., Bannon T., Bartlett P.N.: Analyst 121, 715 (1996)
[24] Baronas R., Ivanauskas F., Kulys J., Sapagovas M.: J. Math. Chem 34, 227 (2003) · Zbl 1052.35093
[25] Phanthong C., Somasundrum M.: J. Electroanal. Chem. 558, 1 (2003)
[26] Lioa S.J., Tan Y.: A general approach to obtain series solution of non-linear differential equations. Stud. Appl. Math. 119(4), 297–354 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.