zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. (English) Zbl 1207.93103
Summary: A simple but efficient framework is proposed to achieve finite-time decentralized formation tracking of multiple autonomous vehicles with the introduction of decentralized sliding mode estimators. First, we propose and study both first-order and second-order decentralized sliding mode estimators. In particular, we show that the proposed first-order decentralized sliding mode estimator can guarantee accurate position estimation in finite time and the proposed second-order decentralized sliding mode estimator can guarantee accurate position and velocity estimation in finite time. Then the decentralized sliding mode estimators are employed to achieve decentralized formation tracking of multiple autonomous vehicles. In particular, it is shown that formation tracking can be achieved for systems with both single-integrator kinematics and double-integrator dynamics in finite time. By using the decentralized sliding mode estimators, many formation tracking/flying scenarios can be easily decoupled into two subtasks, that is, decentralized sliding mode estimation and vehicle desired state tracking, without imposing a stringent condition on the information flow. Finally, several simulation results are presented as a proof of concept.

MSC:
93E10Estimation and detection in stochastic control
93A14Decentralized systems
93C15Control systems governed by ODE
WorldCat.org
Full Text: DOI
References:
[1] Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 988-1001 (2003)
[2] Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control 49, No. 9, 1520-1533 (2004)
[3] Ren, W.; Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE transactions on automatic control 50, No. 5, 655-661 (2005)
[4] Moreau, L.: Stability of multi-agent systems with time-dependent communication links, IEEE transactions on automatic control 50, No. 2, 169-182 (2005)
[5] Fang, L.; Antsaklis, P. J.: Asynchronous consensus protocols using nonlinear paracontractions theory, IEEE transactions on automatic control 53, No. 10, 2351-2355 (2008)
[6] Xiao, F.; Wang, L.: Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays, IEEE transactions on automatic control 53, No. 8, 1804-1816 (2008)
[7] Cao, M.; Morse, A. S.; Anderson, B. D. O.: Agreeing asynchronously, IEEE transactions on automatic control 53, No. 8, 1826-1838 (2008)
[8] Fax, J. A.; Murray, R. M.: Information flow and cooperative control of vehicle formations, IEEE transactions on automatic control 49, No. 9, 1465-1476 (2004)
[9] Lafferriere, G.; Williams, A.; Caughman, J.; Veerman, J. J. P.: Decentralized control of vehicle formations, Systems and control letters 54, No. 9, 899-910 (2005) · Zbl 1129.93303 · doi:10.1016/j.sysconle.2005.02.004
[10] Smith, R. S.; Hadaegh, F. Y.: Closed-loop dynamics of cooperative vehicle formations with parallel estimators and communication, IEEE transactions on automatic control 52, No. 8, 1404-1414 (2007)
[11] Sepulchre, R.; Paley, D. A.; Leonard, N. E.: Stabilization of planar collective motion with limited communication, IEEE transactions on automatic control 53, No. 3, 706-719 (2008)
[12] Qu, Z.; Wang, J.; Hull, R. A.: Cooperative control of dynamical systems with application to autonomous vehicles, IEEE transactions on automatic control 53, No. 4, 894-911 (2008)
[13] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory, IEEE transactions on automatic control 51, No. 3, 401-420 (2006)
[14] Tanner, H. G.; Jadbabaie, A.; Pappas, G. J.: Flocking in fixed and switching networks, IEEE transactions on automatic control 52, No. 5, 863-868 (2007)
[15] Cucker, F.; Smale, S.: Emergent behavior in flocks, IEEE transactions on automatic control 52, No. 5, 852-862 (2007)
[16] Su, H.; Wang, X.; Lin, Z.: Flocking of multi-agents with a virtual leader, IEEE transactions on automatic control 54, No. 2, 293-307 (2009)
[17] Hatano, Y.; Mesbahi, M.: Agreement over random networks, IEEE transactions on automatic control 50, No. 11, 1867-1872 (2005)
[18] Porfiri, M.; Stilwell, D. J.: Consensus seeking over random weighted directed graphs, IEEE transactions on automatic control 52, No. 9, 1767-1773 (2007)
[19] Wu, C. W.: Synchronization and convergence of linear dynamics in random directed networks, IEEE transactions on automatic control 51, No. 7, 1207-1210 (2006)
[20] Tahbaz-Salehi, A.; Jadbabaie, A.: A necessary and sufficient condition for consensus over random networks, IEEE transactions on automatic control 53, No. 3, 791-795 (2008)
[21] Ren, W.; Atkins, E. M.: Distributed multi-vehicle coordinated control via local information exchange, International journal of robust and nonlinear control 17, No. 10--11, 1002-1033 (2007) · Zbl 1266.93010
[22] Xie, G.; Wang, L.: Consensus control for a class of networks of dynamic agents, International journal of robust and nonlinear control 17, No. 10--11, 941-959 (2007) · Zbl 1266.93013
[23] Ren, W.: On consensus algorithms for double-integrator dynamics, IEEE transactions on automatic control 53, No. 6, 1503-1509 (2008)
[24] Cao, Y.; Ren, W.: Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction, in a sampled-data setting, International journal of robust and nonlinear control 20, No. 9, 987-1000 (2010) · Zbl 1298.93225
[25] Tuna, S.: Conditions for synchronizability in arrays of coupled linear systems, IEEE transactions on automatic control 54, No. 10, 2416-2420 (2009)
[26] Li, Z. -K.; Duan, Z. -S.; Chen, G. -R.; Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint, IEEE transactions on circuits and systems I: Regular papers 57, No. 1, 213-224 (2010)
[27] Ren, W.: Multi-vehicle consensus with a time-varying reference state, Systems control letters 56, No. 7--8, 474-483 (2007) · Zbl 1157.90459 · doi:10.1016/j.sysconle.2007.01.002
[28] Cao, Y.; Ren, W.; Li, Y.: Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication, Automatica 45, No. 5, 1299-1305 (2009) · Zbl 1162.93004 · doi:10.1016/j.automatica.2009.01.018
[29] Hong, Y.; Hu, J.; Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology, Automatica 42, No. 7, 1177-1182 (2006) · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013
[30] Hong, Y.; Chen, G.; Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks, Automatica 44, No. 3, 846-850 (2008) · Zbl 1283.93019
[31] Peng, K.; Yang, Y.: Leader-following consensus problem with a varying-velocity leader and time-varying delays, Physica A 388, No. 2--3, 193-208 (2009)
[32] Y. Cao, W. Ren, Z. Meng, Decentralized finite-time sliding mode estimators with applications to formation tracking, in: Proceedings of the American Control Conference, Baltimore, MD, 2010, pp. 4160--4165.
[33] Jiang, F.; Wang, L.: Finite-time information consensus for multi-agent systems with fixed and switching topologies, Physica D 238, 1550-1560 (2009) · Zbl 1170.93304 · doi:10.1016/j.physd.2009.04.011
[34] F. Xiao, L. Wang, Y. Jia, Fast information sharing in networks of autonomous agents, in: Proceedings of the American Control Conference, Seattle, WA, 2008, pp. 4388--4393.
[35] Hui, Q.; Haddad, W. M.; Bhat, S. P.: Finite-time semistability and consensus for nonlinear dynamical networks, IEEE transactions on automatic control 53, No. 8, 1887-1890 (2008)
[36] Cortes, J.: Finite-time convergent gradient flows with applications to network consensus, Automatica 42, No. 11, 1993-2000 (2006)
[37] Y. Cao, W. Ren, Containment control with multiple stationary or dynamic leaders under a directed interaction graph, in: Proceedings of the IEEE Conference on Decision and Control, Shanghai, China, 2009, pp. 3014--3019.
[38] Bhat, S. P.; Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators, IEEE transactions on automatic control 43, No. 5, 678-682 (1998) · Zbl 0925.93821 · doi:10.1109/9.668834
[39] Ren, W.: Decentralization of virtual structures in formation control of multiple vehicle systems via consensus strategies, European journal of control 14, No. 2, 1-11 (2008)
[40] Yang, P.; Freeman, R. A.; Lynch, K. M.: Multi-agent coordination by decentralized estimation and control, IEEE transactions on automatic control 53, No. 11, 2480-2496 (2008)