×

Invariance principles for random bipartite planar maps. (English) Zbl 1208.05135

Summary: Random planar maps are considered in the physics literature as the discrete counterpart of random surfaces. It is conjectured that properly rescaled random planar maps, when conditioned to have a large number of faces, should converge to a limiting surface whose law does not depend, up to scaling factors, on details of the class of maps that are sampled. Previous works on the topic, starting with Chassaing and Schaeffer, have shown that the radius of a random quadrangulation with \(n\) faces, that is, the maximal graph distance on such a quadrangulation to a fixed reference point, converges in distribution once rescaled by \(n^{1/4}\) to the diameter of the Brownian snake, up to a scaling constant.
Using a bijection due to Bouttier, Di Francesco and Guitter between bipartite planar maps and a family of labeled trees, we show the corresponding invariance principle for a class of random maps that follow a Boltzmann distribution putting weight \(q_k\) on faces of degree \(2k\): the radius of such maps, conditioned to have \(n\) faces (or \(n\) vertices) and under a criticality assumption, converges in distribution once rescaled by \(n^{1/4}\) to a scaled version of the diameter of the Brownian snake. Convergence results for the so-called profile of maps are also provided. The convergence of rescaled bipartite maps to the Brownian map, in the sense introduced by Marckert and Mokkadem, is also shown. The proofs of these results rely on a new invariance principle for two-type spatial Galton-Watson trees.

MSC:

05C80 Random graphs (graph-theoretic aspects)
05C30 Enumeration in graph theory
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60C05 Combinatorial probability
60F17 Functional limit theorems; invariance principles

References:

[1] Aldous, D. J. (1991). The continuum random tree. II. An overview. In Stochastic Analysis ( Durham , 1990 ) . London Math. Soc. Lecture Note Ser. 167 23–70. Cambridge Univ. Press. · Zbl 0791.60008
[2] Aldous, D. J. (1993). The continuum random tree. III. Ann. Probab. 21 248–289. · Zbl 0791.60009 · doi:10.1214/aop/1176989404
[3] Ambjørn, J., Durhuus, B. and Jonsson, T. (1997). Quantum Geometry. A Statistical Field Theory Approach . Cambridge Univ. Press. · Zbl 0993.82500 · doi:10.1017/CBO9780511524417
[4] Angel, O. (2003). Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13 935–974. · Zbl 1039.60085 · doi:10.1007/s00039-003-0436-5
[5] Angel, O. and Schramm, O. (2003). Uniform infinite planar triangulations. Comm. Math. Phys. 241 191–213. · Zbl 1098.60010 · doi:10.1007/s00220-003-0932-3
[6] Bouttier, J., Di Francesco, P. and Guitter, E. (2004). Planar maps as labeled mobiles. Electron. J. Combin. 11 1–27. · Zbl 1060.05045
[7] Chassaing, P. and Durhuus, B. (2006). Local limit of labelled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34 879–917. · Zbl 1102.60007 · doi:10.1214/009117905000000774
[8] Chassaing, P. and Schaeffer, G. (2004). Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 161–212. · Zbl 1041.60008 · doi:10.1007/s00440-003-0297-8
[9] Duquesne, T. (2003). A limit theorem for the contour process of conditioned Galton–Watson trees. Ann. Probab. 31 996–1027. · Zbl 1025.60017 · doi:10.1214/aop/1048516543
[10] Duquesne, T. and Le Gall, J.-F. (2002). Random trees, Lévy processes and spatial branching processes. Astérisque 281 . · Zbl 1037.60074
[11] Feller, W. (1971). An Introduction to Probability Theory and Its Applications II , 2nd ed. Wiley, New York. · Zbl 0219.60003
[12] Gittenberger, B. (2004). A note on “State spaces of the snake and its tour—convergence of the discrete snake,” by J.-F. Marckert and A. Mokkadem. J. Theoret. Probab. 16 1063–1067. · Zbl 1050.60080 · doi:10.1023/B:JOTP.0000012006.91251.e8
[13] Janson, S. and Marckert, J.-F. (2005). Convergence of discrete snakes. J. Theoret. Probab. 18 615–645. · Zbl 1084.60049 · doi:10.1007/s10959-005-7252-9
[14] Kurtz, T., Lyons, R., Pemantle, R. and Peres, Y. (1997). A conceptual proof of the Kesten–Stigum theorem for multi-type branching processes. In Classical and Modern Branching Processes ( Minneapolis , MN , 1994 ). IMA Vol. Math. Appl. 84 181–185. Springer, New York. · Zbl 0868.60068
[15] Le Gall, J.-F. (1999). Spatial Branching Processes , Random Snakes and Partial Differential Equations . Birkhäuser, Basel. · Zbl 0938.60003
[16] Le Gall, J.-F. (2006). Conditional limit theorem for tree-indexed random walks. Stochastic Process. Appl. 116 539–567. · Zbl 1093.60061 · doi:10.1016/j.spa.2005.11.008
[17] Le Gall, J.-F. and Weill, M. (2006). Conditioned Brownian trees. Ann. Inst. H. Poincaré Probab. Statist. 42 455–489. · Zbl 1107.60053 · doi:10.1016/j.anihpb.2005.08.001
[18] Marckert, J.-F. and Mokkadem, A. (2003). The depth first processes of Galton–Watson trees converge to the same Brownian excursion. Ann. Probab. 31 1655–1678. · Zbl 1049.05026 · doi:10.1214/aop/1055425793
[19] Marckert, J.-F. and Mokkadem, A. (2004). States spaces of the snake and its tour—convergence of the discrete snake. J. Theoret. Probab. 16 1015–1046. · Zbl 1044.60083 · doi:10.1023/B:JOTP.0000012004.73051.f3
[20] Marckert, J.-F. and Mokkadem, A. (2006). Limit of normalized random quadrangulations: The Brownian map. Ann. Probab. 34 2144–2202. · Zbl 1117.60038 · doi:10.1214/009117906000000557
[21] Petrov, V. V. (1995). Limit Theorems of Probability Theory . Oxford Univ. Press, New York. · Zbl 0826.60001
[22] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875 . Springer, Berlin. · Zbl 1103.60004
[23] Schaeffer, G. (1998). Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.D. thesis, Univ. Bordeaux I. Available at http://www.lix.polytechnique.fr/ schaeffe/Biblio/PhD-Schaeffer.ps.
[24] Stroock, D. W. (1993). Probability Theory, an Analytic View . Cambridge Univ. Press. · Zbl 0925.60004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.