Kim, T.; Choi, J.; Kim, Y. H. \(q\)-Bernstein polynomials associated with \(q\)-Stirling numbers and Carlitz’s \(q\)-Bernoulli numbers. (English) Zbl 1208.11029 Abstr. Appl. Anal. 2010, Article ID 150975, 11 p. (2010). Summary: Recently, the first author [Russ. J. Math. Phys. 18, No. 1, 73–82 (2011; Zbl 1256.11018)] introduced \(q\)-Bernstein polynomials which are different from G. M. Phillips [Ann. Numer. Math. 4, No. 1–4, 511–518 (1997; Zbl 0881.41008)]. In this paper, we give a \(p\)-adic \(q\)-integral representation for \(q\)-Bernstein type polynomials and investigate some interesting identities of \(q\)-Bernstein type polynomials associated with \(q\)-extensions of the binomial distribution, \(q\)-Stirling numbers, and Carlitz’s \(q\)-Bernoulli numbers. Cited in 2 ReviewsCited in 8 Documents MSC: 11B68 Bernoulli and Euler numbers and polynomials 11B65 Binomial coefficients; factorials; \(q\)-identities 11B73 Bell and Stirling numbers 33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\) Citations:Zbl 0881.41008; Zbl 1256.11018 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] T. Kim, “Note on the Euler q-zeta functions,” Journal of Number Theory, vol. 129, no. 7, pp. 1798-1804, 2009. · Zbl 1221.11231 · doi:10.1016/j.jnt.2008.10.007 [2] T. Kim, “Barnes-type multiple q-zeta functions and q-Euler polynomials,” Journal of Physics A, vol. 43, no. 25, Article ID 255201, 11 pages, 2010. · Zbl 1213.11050 · doi:10.1088/1751-8113/43/25/255201 [3] V. Kurt, “A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials,” Applied Mathematical Sciences, vol. 3, no. 53-56, pp. 2757-2764, 2009. · Zbl 1269.11024 [4] M. Acikgoz and S. Araci, “A study on the integral of the product of several type Bernstein polynomials,” IST Transaction of Applied Mathematics-Modelling and Simulation, vol. 1, no. 1, pp. 10-14, 2010. [5] M. Acikgoz and S. Araci, “On the generating function of the Bernstein polynomials,” in Proceedings of the 8th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM ’10), American Institute of Physics, Rhodes, Greece, March 2010. · Zbl 1261.05003 [6] V. Gupta, T. Kim, J. Choi, and Y.-H. Kim, “Generating function for q-Bernstein, q- Meyer-König-Zeller and q-Beta basis,” Automation Computers Applied Mathematics, vol. 19, pp. 7-11, 2010. [7] T. Kim, L. -C. Jang, and H. Yi, “A note on the modified q-Bernstein polynomials,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 706483, 12 pages, 2010. · Zbl 1198.33005 · doi:10.1155/2010/706483 [8] Y. Simsek and M. Acikgoz, “A new generating function of q-Bernstein-type polynomials and their interpolation function,” Abstract and Applied Analysis, vol. 2010, Article ID 769095, 12 pages, 2010. · Zbl 1185.33013 · doi:10.1155/2010/769095 [9] T. Kim, “A note on q-Bernstein polynomials,” Russian Journal of Mathematical Physics, vol. 18, no. 1, 2011. · Zbl 1256.11018 [10] T. Kim, “q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,” Russian Journal of Mathematical Physics, vol. 15, no. 1, pp. 51-57, 2008. · Zbl 1196.11040 · doi:10.1007/s11503-008-1006-9 [11] T. Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol. 9, no. 3, pp. 288-299, 2002. · Zbl 1092.11045 [12] K. I. Joy, “Bernstein polynomials,” On-Line Geometric Modeling Notes, 13 pages, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf. [13] T. Kim, “Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \Bbb Zp,” Russian Journal of Mathematical Physics, vol. 16, no. 4, pp. 484-491, 2009. · Zbl 1192.05011 · doi:10.1134/S1061920809040037 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.