×

An algebraic approach to physical scales. (English) Zbl 1208.15021

The authors propose the category of positive spaces (i.e. essentially the \(1\)-dimensional semi-vector spaces over \(\mathbb R^{+}\)) and \(q\)-rational maps (for all \(q \in Q\)) between them, as a convenient mathematical setting to formulate the intuitive notions of physical scales and units of measurement. To this end, semi-tensor products, spaces of morphisms and rational powers of a positive space are treated. Besides, using methods of Differential Geometry, the bundles of positive spaces based on spacetime and their semi-linear connections are discussed. A brief review of the relationship to dimensional analysis is also given [e.g., see G. I. Barenblatt, Scaling. Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press (2003; Zbl 1094.00006)].

MSC:

15A69 Multilinear algebra, tensor calculus
12K10 Semifields
16Y60 Semirings
70S99 Classical field theories

Citations:

Zbl 1094.00006
Full Text: DOI

References:

[1] Abraham, R., Marsden, J.: Foundations of Mechanics, 2nd edn. Benjamin, Elmsford (1978) · Zbl 0393.70001
[2] Barenblatt, G.I.: Scaling. Cambridge Texts in Applied Mathematics. Cambridge University, Cambridge (2003)
[3] Bogoliubov, N.N., Shirkof, D.V.: Quantum Fields. The Benjamin/Cummings, Redwood City (1983)
[4] Butler, Kim Ki-Hang: The number of idempotents in (0,1)-matrix semigroups. Linear Algebra Appl. 5, 233–246 (1972) · Zbl 0232.20128 · doi:10.1016/0024-3795(72)90005-5
[5] Canarutto, D.: Possibly degenerate tetrad gravity and Maxwell-Dirac fields. J. Math. Phys. 39(9), 4814–4823 (1998) · Zbl 0927.53035 · doi:10.1063/1.532541
[6] Canarutto, D.: Two-spinors, field theories and geometric optics in curved spacetime. Acta Appl. Math. 62(1), 187–224 (2000) · Zbl 1075.81525 · doi:10.1023/A:1006455216170
[7] Canarutto, D.: ”Minimal geometric data” approach to Dirac algebra, spinor groups and field theories. Int. J. Geom. Met. Mod. Phys. 4(6), 1005–1040 (2007) · Zbl 1144.15023 · doi:10.1142/S0219887807002417
[8] Canarutto, D., Jadczyk, A., Modugno, M.: Quantum mechanics of a spin particle in a curved spacetime with absolute time. Rep. Math. Phys. 36(1), 95–140 (1995) · Zbl 0888.53052 · doi:10.1016/0034-4877(96)82487-6
[9] Cohen-Tannoudji, C., Diu, B., Laloë, F.: Méchanique Quantique, vols. I–II. Collection Enseignement des Sciences, vol. 16. Hermann, Paris (1977/1986)
[10] Darton, M., Clark, J.O.E.: The Dent Dictionary of Measurement. Dent, London (1994)
[11] Duff, M.J., Okun, L.B., Veneziano, G.: Trialogue on the number of fundamental constants. ArXiv:physics/0110060v3 [physics:clas-ph], 13 Sep. 2002
[12] Gähler, W., Gähler, S.: Contributions to fuzzy analysis. Fuzzy Sets Syst. 105, 201–224 (1999) · Zbl 0939.46045 · doi:10.1016/S0165-0114(98)00320-0
[13] Golan, J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht (1999) · Zbl 0947.16034
[14] Greub, W.: Multilinear Algebra, 2nd edn. Springer, New York (1978) · Zbl 0387.15001
[15] Hebisch, U., Weinert, H.J.: Semirings–Algebraic Theory and Applications in Computer Science. World Scientific, Singapore (1993) · Zbl 0829.16035
[16] Husemoller, D.: Fibre Bundles. GTM, vol. 20. Springer, New York (1975) · Zbl 0307.55015
[17] Janyška, J., Modugno, M.: Covariant Schrödinger operator. J. Phys.: A, Math. Gen. 35, 8407–8434 (2002) · Zbl 1057.81050 · doi:10.1088/0305-4470/35/40/304
[18] Janyška, J., Modugno, M.: Hermitian vector fields and special phase functions. Int. J. Geom. Meth. Mod. Phys. 3(4), 1–36 (2006) · doi:10.1142/S0219887806001053
[19] Janyška, J., Modugno, M.: Geometric structure of the classical relativistic phase space phase functions. Int. J. Geom. Meth. Mod. Phys. 5(5), 1–56 (2008) · Zbl 1151.37058 · doi:10.1142/S0219887808002618
[20] Janyška, J., Modugno, M., Vitolo, R.: Semi-vector spaces and units of measurement. Commutative Algebra (math.AC), 5 Oct. 2007. arXiv:0710.1313
[21] Jerrard, H.G., McNeill, D.B.: A Dictionary of Scientific Units, 6th edn. Chapman and Hall, London (1992)
[22] Ketov, S.V.: Conformal Field Theory. World Scientific, Singapore (1995) · Zbl 0875.00029
[23] Matzas, G.E.A., Pleitez, V., Saa, A., Vanzella, D.A.T.: The number of dimensional fundamental constants. ArXiv:0711.4276v2 [physics. class-ph], 4 Dec. 2007
[24] Misner, C.W., Thorne, K.S., Wheeeler, J.A.: Gravitation. Freeman, New York (1973)
[25] Modugno, M., Saller, D., Tolksdorf, J.: Classification of infinitesimal symmetries in covariant classical mechanics. J. Math. Phys. 47, 1–27 (2006) · Zbl 1112.70017 · doi:10.1063/1.2199068
[26] Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1991) · Zbl 0723.58045
[27] Panofsky, W.K.H., Phillips, M.: Classical Electricity and Magnetism. Addison-Wesley, Reading (1956) · Zbl 0067.19205
[28] Pap, E.: Integration of functions with values in complete semi-vector space. In: Measure Theory, Oberwolfach 1979. Lecture Notes in Mathematics, vol. 794, pp. 340–347. Springer, Berlin (1980)
[29] Prakash, P., Sertel, M.R.: Topological semivector spaces, convexity and fixed point theory. Semigroup Forum 9, 117–138 (1974) · Zbl 0309.46008 · doi:10.1007/BF02194841
[30] Prakash, P., Sertel, M.R.: Hyperspaces of topological vector spaces: their embedding in topological vector spaces. Proc. AMS 61(1), 163–168 (1976) · Zbl 0301.46003 · doi:10.2307/2041686
[31] Saller, D., Vitolo, R.: Symmetries in covariant classical mechanics. J. Math. Phys. 41(10), 6824–6842 (2000) · Zbl 1050.70011 · doi:10.1063/1.1288795
[32] Takahashi, M.: On the bordism categories III. Math. Sem. Notes Kobe Univ. 10, 211–236 (1982) · Zbl 0512.55007
[33] Uzan, J.P.: The fundamental constants and their variation: observational status and their theoretical motivations. ArXiv:hep-ph0205340v1 , 30 May 2002
[34] Vitolo, R.: Quantum structures in Galilei general relativity. Ann. Inst. Henri Poincaré 70 (1999) · Zbl 0965.81038
[35] Vitolo, R.: Quantum structures in Einstein general relativity. Lett. Math. Phys. 51, 119–133 (2000) · Zbl 0977.83009 · doi:10.1023/A:1007624902983
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.