×

zbMATH — the first resource for mathematics

Gröbner bases for operads. (English) Zbl 1208.18007
The purpose of the article under review is to set up a theory of Gröbner bases for symmetric operads. The authors notably succeed in defining a version of Burchberger’s algorithm for the construction of Gröbner bases in operadic ideals. The operadic Gröbner bases reduce to Hoffbeck’s notion of Poincaré-Birkhoff-Witt basis in the special case of ideals generated by quadratic operadic polynomials. According to E. Hoffbeck [Manuscr. Math. 131, No. 1–2, 87–110 (2010; Zbl 1207.18009)], an operad equipped with a Poincaré-Birkhoff-Witt basis is Koszul in the sense of V. Ginzburg and M. Kapranov [Duke Math. J. 76, No. 1, 203–272 (1994; Zbl 0855.18006)]. Thus, the algorithm defined in the article under review gives an effective process for the construction of Poincaré-Birkhoff-Witt basis of operads and, as a byproduct, gives an effective approach to check that an operad is Koszul. These observations, which parallel usual results on the classical homology theory of associative algebras, give authors’ main motivation for the definition of Gröbner bases in the context of operads.
In algebra, the definition of Gröbner bases relies on the existence of good ordering on monomials. For the extension to operads, we face the difficulty that operadic monomials have an intricate treewise structure, much more difficult to handle than the linear ordering of associative monomials, and we have to keep track of additional symmetric group actions in compositions. The authors work out these difficulties by extending ideas of E. Hoffbeck, which they put in a general conceptual framework. Notably, they regard the pointed shuffle composites of [loc. cit.] as the building blocks of the composition structure of a new category of operads, coined shuffle operads by them, which retain enough of the structure of symmetric operads for applications. More specifically, the authors observe that the forgetful functor from symmetric operads to shuffle operads preserve free objects, as well as presentations by generators and relations. Therefore, the category of shuffle operads gives a good effective device for the study of symmetric operads themselves.

MSC:
18D50 Operads (MSC2010)
16S15 Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting)
20B30 Symmetric groups
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] G. Bergman, The diamond lemma for ring theory , Adv. in Math. 29 (1978), 178–218. · Zbl 0326.16019 · doi:10.1016/0001-8708(78)90010-5
[2] L. A. Bokut, Imbeddings into simple associative algebras , Algebra i Logic 15 (1978), 73–90. · Zbl 0355.16012 · doi:10.1007/BF01877233
[3] B. Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal , Ph.D. dissertation, University of Innsbruck, 1965 (German), J. Symbolic Comput. 41 (2006), 471–511. · Zbl 1245.13020 · doi:10.1016/j.jsc.2005.09.007
[4] F. Chapoton, Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation , C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 681–684. · Zbl 0999.16027 · doi:10.1016/S0764-4442(01)01919-X
[5] -, On a Hopf operad containing the Poisson operad , Algebr. Geom. Topol. 3 (2003), 1257–1273. · Zbl 1059.18005 · doi:10.2140/agt.2003.3.1257 · emis:journals/UW/agt/AGTVol3/agt-3-44.abs.html · eudml:124366
[6] F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad , Int. Math. Res. Not. IMRN 2001 , 395–408. · Zbl 1053.17001 · doi:10.1155/S1073792801000198
[7] S. Cherkis and C. SäMann, Multiple M2-branes and generalized 3-Lie algebras , Phys. Rev. D 78 (2008), 066019. · doi:10.1103/PhysRevD.78.066019
[8] V. Dotsenko, An operadic approach to deformation quantization of compatible Poisson brackets , I. J. Gen. Lie Theory Appl. 1 (2007), 107–115. · Zbl 1120.53048 · doi:10.4303/jglta/S070203 · www.jglta.astralgo.eu
[9] V. Dotsenko and M. V. Johannson, Implementing Gröbner bases for operads , to appear in Sémin. Congr., · Zbl 1277.68301 · arxiv.org
[10] V. V. Dotsenko and A. S. Khoroshkin, Character formulas for the operad of a pair of compatible brackets and for the bi-Hamiltonian operad , Funktsional. Anal. i Prilozhen. 41 (2007), 1–17. · Zbl 1145.18001 · doi:10.1007/s10688-007-0001-3
[11] W. L. Gan, Koszul duality for dioperads , Math. Res. Lett. 10 (2003), 109–124. · Zbl 1103.18010 · doi:10.4310/MRL.2003.v10.n1.a11
[12] L. Gerritzen, Tree polynomials and non-associative Gröbner bases , J. Symbolic Comp. 41 (2006), 297–316. · Zbl 1158.17300 · doi:10.1016/j.jsc.2003.09.005
[13] V. Ginzburg and M. Kapranov, Koszul duality for operads , Duke Math. J. 76 (1994), 203–272. · Zbl 0855.18006 · doi:10.1215/S0012-7094-94-07608-4
[14] A. V. Gnedbaye, “Opérades des algèbres \((k+1)\)-aires” in Operads: Proceedings of Renaissance Conferences (Hartford, Conn./Luminy, 1995) , Contemp. Math. 202 , Amer. Math. Soc., Providence, 1997, 83–113. · Zbl 0880.17003
[15] P. Hanlon and M. Wachs, On Lie \(k\)-algebras , Adv. Math. 113 (1995), 206–236. · Zbl 0844.17001 · doi:10.1006/aima.1995.1038
[16] L. HellströM, Rewriting in operads and PROPs , J. Nonlin. Math. Phys. 13 , Suppl. (2006), 66–75. · Zbl 1154.18302 · doi:10.2991/jnmp.2006.13.s.8
[17] E. Hoffbeck, A Poincaré-Birkhoff-Witt criterion for Koszul operads , Manuscripta Math. 131 (2010), 87–110. · Zbl 1207.18009 · doi:10.1007/s00229-009-0303-2
[18] A. Khoroshkin, Koszul operads and distributive lattices , preprint, 2006.
[19] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz , Enseign. Math. (2) 39 (1993), 269–293. · Zbl 0806.55009
[20] M. Markl, Distributive laws and Koszulness , Ann. Inst. Fourier (Grenoble) 46 (1996), 307–323. · Zbl 0853.18005 · doi:10.5802/aif.1516 · numdam:AIF_1996__46_2_307_0 · eudml:75180
[21] M. Markl and E. Remm, (Non-)Koszulity of operads for \(n\)-ary algebras, cohomology and deformations , · Zbl 1265.18015 · arxiv.org
[22] M. Markl, S. Shnider, and J. Stasheff, Operads in Algebra , Math. Surveys Monogr. 96 , Amer. Math. Soc., Providence, 2002. · Zbl 1017.18001
[23] M. Markl and A. A. Voronov, “PROPped up graph cohomology” in Algebra, Arithmetic, and Geometry. Volume I: In Honor of Y. I. Manin , Progr. Math. 269 , Birkhäuser, Boston, 2009. · Zbl 1208.18008
[24] S. A. Merkulov, Exotic automorphisms of the Schouten algebra of polyvector fields , · Zbl 1191.18003 · arxiv.org
[25] S. B. Priddy, Koszul resolutions , Trans. Amer. Math. Soc. 152 (1970), 39–60. JSTOR: · Zbl 0261.18016 · doi:10.2307/1995637 · links.jstor.org
[26] P. Salvatore and R. Tauraso, The operad Lie is free , J. Pure Appl. Algebra 213 (2009), 224–230. · Zbl 1210.18008 · doi:10.1016/j.jpaa.2008.06.008
[27] A. I. Shirshov, Some algorithmic problems for Lie algebras , Sibirsk. Mat. Z. 3 (1962), 292–296. (Russian); English translation in SIGSAM Bulletin 33 (1999), no. 2, 3–6. · Zbl 0104.26004
[28] C. R. Stover, The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring , J. Pure Appl. Algebra 86 (1993), 289–326. · Zbl 0793.16016 · doi:10.1016/0022-4049(93)90106-4
[29] H. Strohmayer, Operads of compatible structures and weighted partitions , J. Pure Appl. Algebra 212 (2008), 2522–2534. · Zbl 1149.18006 · doi:10.1016/j.jpaa.2008.04.009
[30] V. A. Ufnarovskij, Combinatorial and asymptotic methods in algebra , Encyclopedia Math. Sci. 57 , Springer, Berlin, 1995, 1–196. · Zbl 0826.16001
[31] B. Vallette, Free monoid in monoidal abelian categories , Appl. Categ. Structures 17 (2009), 43–61. · Zbl 1200.18003 · doi:10.1007/s10485-008-9130-y
[32] P. Van Der Laan, Coloured Koszul duality and strongly homotopy operads , · arxiv.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.