Ruscheweyh’s univalence criterion and quasiconformal extensions. (English) Zbl 1208.30023

Let \(\mathcal A\) be the family of analytic functions \(f(z)=z+\sum_{n=2}^{\infty}a_nz^n\) on the unit disk \(\mathbb D\). The purpose of the paper is to refine Ruscheweyh’s univalence condition to a quasiconformal extension criterion proved in
Theorem 1: Let \(s=a+ib\), \(a>0\), \(b\in\mathbb R\), \(k\in[0,1)\), and \(f\in\mathcal A\). Assume that for some constant \(c\in\mathbb C\) and all \(z\in\mathbb D\),
\[ \left|c|z|^2+s-a\big(1-|z|^2\big)\left[s\left(1+\frac{zf''(z)}{f'(z)}\right)+(1-s)\frac{zf'(z)}{f(z)}\right]\right|\leq M \] with \(M=ak|s|+(a-1)|s+c|\) if \(0<a\leq1\) and \(M=k|s|\) if \(a>1\). Then \(f\) has an \(l\)-quasiconformal extension to \(\mathbb C\), where \[ l=\frac{2ka+(1-k^2)|b|}{(1+k^2)a+(1-k^2)|s|}<1. \] Theorem 1 includes Becker’s univalence condition. The author applies Theorem 1 to obtain a quasiconformal extension criterion for the class of Bazilevič functions. Besides, the author proves a similar result for functions \(g(\zeta)\) that are analytic on the exterior domain of \(\mathbb D\). This yields a corollary which gives a positive answer to an open problem posed by Ruscheweyh, whether a function \[ g(\zeta)=\zeta+\frac{d}{\zeta}+\dots,\qquad |\zeta|>1, \]
\[ \big(|\zeta|^2-1\big)\bigg|1+\frac{\zeta f''(\zeta)}{f'(\zeta)}-\frac{\zeta f'(\zeta)}{f(\zeta)}\bigg|\leq k\quad\text{for all}\quad |\zeta|>1 \] admits a quasiconformal extension to \(\mathbb C\).


30C62 Quasiconformal mappings in the complex plane
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI arXiv