zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hybrid Taguchi-differential evolution algorithm for parameter estimation of differential equation models with application to HIV dynamics. (English) Zbl 1208.34069
Summary: This work emphasizes solving the problem of parameter estimation for a human immunodeficiency virus (HIV) dynamical model by using an improved differential evolution, which is called the hybrid Taguchi-differential evolution (HTDE). The HTDE, used to estimate parameters of an HIV dynamical model, can provide robust optimal solutions. In this work, the HTDE approach is effectively applied to solve the problem of parameter estimation for an HIV dynamical model and is also compared with the traditional differential evolution (DE) approach and numerical methods presented in the literature. An illustrative example shows that the proposed HTDE gives an effective and robust way for obtaining an optimal solution, and can get better results than the traditional DE approach and numerical methods presented in the literature for an HIV dynamical model.

34C60Qualitative investigation and simulation of models (ODE)
34A55Inverse problems of ODE
92C60Medical epidemiology
Full Text: DOI EuDML
[1] A. S. Perelson and P. W. Nelson, “Mathematical analysis of HIV-1 dynamics in vivo,” SIAM Review, vol. 41, no. 1, pp. 3-44, 1999. · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[2] S. Bonhoeffer, M. Rembiszewski, G. M. Ortiz, and D. F. Nixon, “Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection,” AIDS, vol. 14, no. 15, pp. 2313-2322, 2000. · doi:10.1097/00002030-200010200-00012
[3] D. Wodarz, “Helper-dependent vs. helper-independent CTL responses in HIV infection: implications for drug therapy and resistance,” Journal of Theoretical Biology, vol. 213, no. 3, pp. 447-459, 2001. · doi:10.1006/jtbi.2001.2426
[4] D. Wodarz and M. A. Nowak, “Mathematical models of HIV pathogenesis and treatment,” BioEssays, vol. 24, no. 12, pp. 1178-1187, 2002. · doi:10.1002/bies.10196
[5] R. V. Culshaw, S. Ruan, and G. Webb, “A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay,” Journal of Mathematical Biology, vol. 46, no. 5, pp. 425-444, 2003. · Zbl 1023.92011 · doi:10.1007/s00285-002-0191-5
[6] P. Katri and S. Ruan, “Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells,” Comptes Rendus Biologies, vol. 327, no. 11, pp. 1009-1016, 2004. · doi:10.1016/j.crvi.2004.05.011
[7] B. M. Adams, H. T. Banks, M. Davidian et al., “HIV dynamics: modeling, data analysis, and optimal treatment protocols,” Journal of Computational and Applied Mathematics, vol. 184, no. 1, pp. 10-49, 2005. · Zbl 1075.92030 · doi:10.1016/j.cam.2005.02.004
[8] A. Murase, T. Sasaki, and T. Kajiwara, “Stability analysis of pathogen-immune interaction dynamics,” Journal of Mathematical Biology, vol. 51, no. 3, pp. 247-267, 2005. · Zbl 1086.92029 · doi:10.1007/s00285-005-0321-y
[9] J. Karrakchou, M. Rachik, and S. Gourari, “Optimal control and infectiology: application to an HIV/AIDS model,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 807-818, 2006. · Zbl 1096.92031 · doi:10.1016/j.amc.2005.11.092
[10] T. Dumrongpokaphan, Y. Lenbury, R. Ouncharoen, and Y. Xu, “An intracellular delay-differential equation model of the HIV infection and immune control,” Mathematical Modelling of Natural Phenomena, vol. 2, no. 1, pp. 84-112, 2007. · doi:10.1051/mmnp:2008012
[11] H. Zhu and X. Zou, “Impact of delays in cell infection and virus production on HIV-1 dynamics,” Mathematical Medicine and Biology, vol. 25, no. 2, pp. 99-112, 2008. · Zbl 1155.92031 · doi:10.1093/imammb/dqm010
[12] D. Burg, L. Rong, A. U. Neumann, and H. Dahari, “Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection,” Journal of Theoretical Biology, vol. 259, no. 4, pp. 751-759, 2009. · doi:10.1016/j.jtbi.2009.04.010
[13] V. Radisavljevic-Gajic, “Optimal control of HIV-virus dynamics,” Annals of Biomedical Engineering, vol. 37, no. 6, pp. 1251-1261, 2009. · doi:10.1007/s10439-009-9672-7
[14] A. Rao, K. Thomas, K. Sudhakar, and P. K. Maini, “HIV/AIDS epidemic in India and predicting the impact of the national response: mathematical modeling and analysis,” Mathematical Biosciences and Engineering, vol. 6, no. 4, pp. 779-813, 2009. · Zbl 1178.92048 · doi:10.3934/mbe.2009.6.779
[15] X. Wang, Y. Tao, and X. Song, “A delayed HIV-1 infection model with Beddington-DeAngelis functional response,” Nonlinear Dynamics, vol. 62, pp. 67-72, 2010. · Zbl 1209.34102 · doi:10.1007/s11071-010-9699-1
[16] H. Wu, A. A. Ding, and V. De Gruttola, “Estimation of HIV dynamic parameters,” Statistics in Medicine, vol. 17, no. 21, pp. 2463-2485, 1998. · doi:10.1002/(SICI)1097-0258(19981115)17:21<2463::AID-SIM939>3.0.CO;2-A
[17] H. Putter, S. H. Heisterkamp, J. M. A. Lange, and F. De Wolf, “A Bayesian approach to parameter estimation in HIV dynamical models,” Statistics in Medicine, vol. 21, no. 15, pp. 2199-2214, 2002. · doi:10.1002/sim.1211
[18] X. Xia, “Estimation of HIV/AIDS parameters,” Automatica, vol. 39, no. 11, pp. 1983-1988, 2003. · Zbl 1046.93013 · doi:10.1016/S0005-1098(03)00220-6
[19] X. Xia and C. H. Moog, “Identifiability of nonlinear systems with application to HIV/AIDS models,” IEEE Transactions on Automatic Control, vol. 48, no. 2, pp. 330-336, 2003. · doi:10.1109/TAC.2002.808494
[20] M. S. Ciupe, B. L. Bivort, D. M. Bortz, and P. W. Nelson, “Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models,” Mathematical Biosciences, vol. 200, no. 1, pp. 1-27, 2006. · Zbl 1086.92022 · doi:10.1016/j.mbs.2005.12.006
[21] Y. Huang, D. Liu, and H. Wu, “Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system,” Biometrics, vol. 62, no. 2, pp. 413-423, 2006. · Zbl 1097.62128 · doi:10.1111/j.1541-0420.2005.00447.x
[22] S. Manseur, N. Messaoudi, and Y. Cherruault, “Parameter identification of an HIV model by the combined Adomian/Alienor method,” Kybernetes, vol. 35, no. 10, pp. 1725-1734, 2006. · Zbl 1160.93348 · doi:10.1108/03684920610688685
[23] H. Wu, H. Zhu, H. Miao, and A. S. Perelson, “Parameter identifiability and estimation of HIV/AIDS dynamic models,” Bulletin of Mathematical Biology, vol. 70, no. 3, pp. 785-799, 2008. · Zbl 1146.92021 · doi:10.1007/s11538-007-9279-9
[24] H. Miao, C. Dykes, L. M. Demeter, and H. Wu, “Differential equation modeling of HIV viral fitness experiments: model identification, model selection, and multimodel inference,” Biometrics, vol. 65, no. 1, pp. 292-300, 2009. · Zbl 1159.62079 · doi:10.1111/j.1541-0420.2008.01059.x
[25] H. Liang, H. Miao, and H. Wu, “Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model,” Annals of Applied Statistics, vol. 4, pp. 460-483, 2010. · Zbl 1189.62171 · doi:10.1214/09-AOAS290
[26] R. Storn and K. Price, “Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces,” Tech. Rep. TR-95-012, International Computer Science Institute, Berkeley, Calif, USA, 1995. · Zbl 0888.90135
[27] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algorithm,” Soft Computing, vol. 9, no. 6, pp. 448-462, 2005. · Zbl 1076.93513 · doi:10.1007/s00500-004-0363-x
[28] R. Angira and B. V. Babu, “Optimization of process synthesis and design problems: a modified differential evolution approach,” Chemical Engineering Science, vol. 61, no. 14, pp. 4707-4721, 2006. · Zbl 1266.90159 · doi:10.1016/j.ces.2006.03.004
[29] H.-K. Kim, J.-K. Chong, K.-Y. Park, and D. A. Lowther, “Differential evolution strategy for constrained global optimization and application to practical engineering problems,” IEEE Transactions on Magnetics, vol. 43, no. 4, pp. 1565-1568, 2007. · doi:10.1109/TMAG.2006.892100
[30] G. C. Onwubolu, “Design of hybrid differential evolution and group method of data handling networks for modeling and prediction,” Information Sciences, vol. 178, no. 18, pp. 3616-3634, 2008. · doi:10.1016/j.ins.2008.05.013
[31] T. Takahama, S. Sakai, A. Hara, and N. Iwane, “Predicting stock price using neural networks optimized by differential evolution with degeneration,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 12, pp. 5021-5031, 2009.
[32] W.-H. Ho, J.-H. Chou, and C.-Y. Guo, “Parameter identification of chaotic systems using improved differential evolution algorithm,” Nonlinear Dynamics, vol. 61, pp. 29-41, 2010. · Zbl 1204.93034 · doi:10.1007/s11071-009-9629-2
[33] A. Noktehdan, B. Karimi, and A. Husseinzadeh Kashan, “A differential evolution algorithm for the manufacturing cell formation problem using group based operators,” Expert Systems with Applications, vol. 37, no. 7, pp. 4822-4829, 2010. · doi:10.1016/j.eswa.2009.12.033
[34] J.-T. Tsai, W.-H. Ho, J.-H. Chou, and C.-Y. Guo, “Optimal approximation of linear systems using Taguchi-sliding-based differential evolution algorithm,” Applied Soft Computing Journal. In press. · doi:10.1016/j.asoc.2010.06.016
[35] R. Storn, “System design by constraint adaptation and differential evolution,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 1, pp. 22-34, 1999. · doi:10.1109/4235.752918
[36] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series, Springer, Berlin, Germany, 2005. · Zbl 1186.90004
[37] M. A. Nowak and C. R. M. Bangham, “Population dynamics of immune responses to persistent viruses,” Science, vol. 272, no. 5258, pp. 74-79, 1996. · doi:10.1126/science.272.5258.74
[38] G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering, McGraw-Hill, New York, NY, USA, 2000.
[39] Y. Wu, Taguchi Methods for Robust Design, The American Society of Mechanical Engineers, New York, NY, USA, 2000.
[40] J.-T. Tsai, T.-K. Liu, and J.-H. Chou, “Hybrid Taguchi-genetic algorithm for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 365-377, 2004. · doi:10.1109/TEVC.2004.826895
[41] J.-T. Tsai, J.-H. Chou, and T.-K. Liu, “Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp. 69-80, 2006. · doi:10.1109/TNN.2005.860885